
Lyra: Elastic Scheduling for Deep Learning Clusters
Jiamin Li∗

City University of Hong Kong
Hong Xu

The Chinese University of Hong Kong
Yibo Zhu
Google

Zherui Liu
ByteDance Inc.

Chuanxiong Guo
Unaffiliated

Cong Wang
City University of Hong Kong

Abstract
Organizations often build separate training and inference
clusters for deep learning, and use separate schedulers to
manage them. This leads to problems for both: inference
clusters have low utilization when the traffic load is low;
training jobs often experience long queuing due to a lack
of resources. We introduce Lyra, a new cluster scheduler to
address these problems. Lyra introduces capacity loaning to
loan idle inference servers for training jobs. It further exploits
elastic scaling that scales a training job’s resource allocation
to better utilize loaned servers. Capacity loaning and elastic
scaling create new challenges to cluster management. When
the loaned servers need to be returned, we need to minimize
job preemptions; when more GPUs become available, we
need to allocate them to elastic jobs and minimize the job
completion time (JCT). Lyra addresses these combinatorial
problems with principled heuristics. It introduces the notion
of server preemption cost, which it greedily reduces dur-
ing server reclaiming. It further relies on the JCT reduction
value defined for each additional worker of an elastic job to
solve the scheduling problem as a multiple-choice knapsack
problem. Prototype implementation on a 64-GPU testbed
and large-scale simulation with 15-day traces of over 50,000
production jobs show that Lyra brings 1.53x and 1.48x reduc-
tions in average queuing time and JCT, and improves cluster
usage by up to 25%.

CCS Concepts: • Computer systems organization →
Cloud computing;

Keywords: GPU cluster scheduling, deep learning

∗Work done at ByteDance Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’23, May 8–12, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9487-1/23/05. . . $15.00
https://doi.org/10.1145/3552326.3587445

ACM Reference Format:
Jiamin Li, HongXu, Yibo Zhu, Zherui Liu, ChuanxiongGuo, andCong
Wang. 2023. Lyra: Elastic Scheduling for Deep Learning Clusters. In
Eighteenth European Conference on Computer Systems (EuroSys ’23),
May 8–12, 2023, Rome, Italy. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3552326.3587445

1 Introduction
Recently, Deep Neural Networks (DNNs) have seen wild suc-
cesses in many applications [25]. Hyperscale online service
providers have adopted DNN, and build large-scale GPU
clusters to accelerate DNN workloads for both training and
inference. GPU cluster scheduling is a fundamental and crit-
ical task to utilize the expensive infrastructure efficiently, by
optimizing job resource allocation and task placement.

It is common practice today to separately build and man-
age two types of GPU clusters, one for training and one for
inference. This is because, for the same model, inference
requires less computation and GPU memory than training
and is less likely to utilize the numerous cores of training
GPU [7, 35, 38]. Inference clusters usually use weaker GPUs,
like Nvidia T4, with a fraction of the resources of the training
GPUs, such as Nvidia V100 and A100.
This separation creates problems for both sides (§2). Our

observations are based on experiences of operating produc-
tion clusters with 𝑂(10k) GPUs for training and even more
for inference. Specifically, inference cluster utilization is usu-
ally low (<40%) for an extended period of time due to the
diurnal traffic pattern. At the same time, training jobs ex-
perience long queuing time before they can start, with an
average of over 3,000s and 95%ile of almost 10,000s as seen
from a 15-day trace with over 50,000 jobs. The long queuing
time is due to both the high cluster utilization and the GPU
resource fragmentation.
To address these problems, we propose capacity loaning

to allow the inference cluster to loan the idle GPU servers
during low-traffic periods to run training jobs, and reclaim
them back when inference workloads increase again (§2.1).
Capacity loaning mitigates both the utilization problem for
inference and queuing problem for training. It is feasible
for training jobs that do not have strict requirements on
GPU type. Then to ensure the on-loan servers are rapidly
utilized by training jobs when they become available, we
draw inspiration from elastic scaling [16, 36, 42] (§2.2). Elastic
scaling enables a running job to scale out or scale in to better
utilize the dynamically changing resource pool. It also helps

405

https://doi.org/10.1145/3552326.3587445
https://doi.org/10.1145/3552326.3587445
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3552326.3587445&domain=pdf&date_stamp=2023-05-08

EuroSys ’23, May 8–12, 2023, Rome, Italy Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong Guo, and Cong Wang

reduce queuing delay since an elastic job can start with a
small number of workers first and increase its workers when
more resources become available.
Capacity loading and elastic scaling create new degrees

of freedom for cluster scheduling. As we navigate the new
design space, we meet several new challenges that must be
addressed before we can reap the benefits.

First, though loaning decisions can be solely made by the
inference cluster scheduler to ensure inference workloads
are not affected, reclaiming is more intricate. When the infer-
ence cluster needs to reclaim on-loan resources, the training
scheduler has to preempt all running jobs on those servers.
Given the high overhead of preemption and prolonged run-
ning time to the jobs, the scheduler must carefully select the
servers in order to minimize the total preemptions.
Second, job scheduling is inherently more complicated

with elastic scaling. Resource allocation has to consider a
mix of inelastic jobs with fixed demand and elastic jobs with
variable demand. We show that classical scheduling policies
such as shortest job first (SJF) no longer work well with elas-
ticity, and finding the JCT-optimal solution for merely two
jobs is difficult. Given the allocation results, the scheduler
still needs to determine the worker-server placement to min-
imize fragmentation, where servers are now heterogeneous
with different GPUs because of capacity loaning.

Our key insight in solving these challenges is to prioritize
the minimum resources needed by a job over its elastic de-
mand, and to prioritize the dedicated training servers over
the on-loan inference servers. This makes sense because the
minimum demand of an elastic job is equivalent to an inelas-
tic job to which not allocating resources is detrimental, but
the elastic part can be fulfilled later without stalling the job.
Our solution, therefore, exhibits a two-phase structure

following the above insight. For reclaiming, we first kill the
elastic workers running on on-loan servers since stopping
them does not lead to any job-level preemption. When pre-
emption becomes inevitable, we characterize the problem
as a knapsack problem with dependent item values [32] and
develop an efficient heuristic to solve it (§4).

For resource allocation, we first allocate for both inelastic
jobs and elastic jobs’ base demand, with the aim of launch-
ing as many jobs as possible. We then scale out the sched-
uled elastic jobs if resources permit. The first phase can be
solved using SJF to reduce queuing time and the second phase
is formulated as a multiple-choice knapsack problem [48]
to minimize running time, which in practice can often be
solved using dynamic programming (§5.2). We then tackle
the placement problem by placing the inelastic jobs on train-
ing servers, and elastic jobs on on-loan servers as much as
feasible. Jobs are ordered based on the best-fit-decreasing
policy to address the bin packing nature [6] and minimize
fragmentation (§5.3).
Putting everything together, we design (§3–§5), imple-

ment (§6), and evaluate (§7) Lyra, a new cluster scheduler

that realizes capacity loaning with elastic scaling. Lyra has
an orchestrator that manages capacity loaning by executing
instructions from the inference scheduler on when and how
much to loan or reclaim, and by deciding which on-loan
servers to return for reclaiming. Then a job scheduler pe-
riodically determines allocation and placement, and scales
new and existing elastic jobs in response to resource and job
dynamics. To be pragmatic, Lyra considers elastic scaling
only for large DNNs whose training throughput scales well
in our experiments.
The results of Lyra are promising (§7). We build a high-

fidelity simulator, and replay a 15-day job trace collected
from 3,544 training GPUs and 4,160 inference GPUs. We
find that compared to a FIFO scheduler, Lyra can reduce the
average and 95%ile JCT by up to 1.48x and 1.47x, respectively,
and improve GPU usage by 25%. In terms of job scheduling,
Lyra also outperforms state-of-the-art Pollux by 1.28x and
1.27x in median JCT and 95%ile JCT when elastic jobs occupy
36% training resources.

We summarize our contributions as follows.
• With production traces, we report the problem of separate
management of training and inference clusters, i.e. low
utilization in the inference cluster and long queuing time
in the training cluster.

• We propose cluster-level capacity loaning and job-level
elastic scaling, two new control knobs for cluster sched-
uling to address the above problems.

• We study the resulting cluster scheduling problems, de-
velop a key insight to prioritize the minimum resources
needed by each job to address elasticity, and use a princi-
pled approach to characterize and solve each problem.

• We design and implement Lyra, a novel cluster sched-
uler that integrates our solutions. Lyra works with exist-
ing resource management frameworks and is ready for
deployment. Evaluation using testbed experiments and
large-scale simulations validates its effectiveness.

2 Motivation
We start by presenting our motivation of Lyra.

2.1 Why Capacity Loaning?
Large GPU clusters are built to accommodate inference and
training workloads with distinct requirements. Customer-
facing inference jobs are latency-sensitive [7, 38]. Training
jobs are much more resource-heavy and run for extended pe-
riods of time. Thus they emphasize completion times instead.
Operators usually deploy separate clusters with different
GPUs for training and inference, and manage them indepen-
dently to minimize interference. Our production environ-
ment, for example, mainly uses Tesla V100 in the training
cluster and T4 in the inference cluster. Job traces show that
this practice leads to low utilization of inference resources
and sub-optimal performance for training jobs.

406

Lyra: Elastic Scheduling for Deep Learning Clusters EuroSys ’23, May 8–12, 2023, Rome, Italy

Figure 1. Inference cluster GPU utilization, i.e. fraction of GPUs serving at
least one request in our inference cluster. The measurement spans one week
from Oct 1 to Oct 7, 2020. The cluster has about 4,000 GPUs. The utilization
changes from 42% in bottom hours to 95% in peak hours.

Figure 2. The fraction of queuing jobs among all the newly-submitted jobs
in each hour in our training cluster for one week. A job suffers queuing
time when the scheduler fails to satisfy its resource demand on the first try.
If the ratio is high, it means that most of the jobs submitted in that hour are
queued. The cluster has ∼3,500 GPUs, and the average utilization is 82%.

Inefficient inference cluster utilization. Similar to other
web services [27], the inference cluster is overprovisioned in
order to handle the peak traffic. Inevitably, its resources are
often underutilized due to the dynamic inference requests
generated by customers.
We plot the GPU utilization in one of our inference clus-

ters with 5-minute intervals for one week’s time in Figure 1.
Utilization is defined as the fraction of GPUs occupied by
at least one inference job. We observe a clear diurnal pat-
tern: peak traffic lasts about four hours at night, and demand
trough occurs before dawn. The peak-to-trough ratio is ∼2.2
within a day, and the average utilization is ∼65%, both im-
plying that there are abundant resources to be exploited in
the inference cluster for extended periods of time.
Long queuing time for training jobs. Turning to the train-
ing cluster, a salient observation we make is that many train-
ing jobs experience long queuing before they can be dis-
patched with enough resources. Figure 2 depicts the hourly
queuing job ratio in our training cluster for the same week
as in Figure 1. A significant fraction of jobs (as high as 100%)
still has to wait for resources from time to time. The aver-
age queuing time is longer than 3,000 seconds and certainly
non-negligible.

The long queuing time is not only due to lack of resources.
In fact, the average GPU utilization across the same period
of time is 82%, which means there are often idle GPUs. The
dynamic training demand certainly also contributes to the
long queuing time. In addition, training demand does not
exhibit clear patterns for prediction.

Capacity loaning. We propose to exploit the unused infer-
ence resources to run training jobs temporarily, i.e. loaning
inference capacity for training. It mitigates both problems
above at the same time: The inference cluster is better uti-
lized, and training jobs have more resources to help reduce
queuing time. The on-loan capacity can be reclaimed dynam-
ically in case the inference traffic spikes to ensure the quality
of service.

Though training jobs typically request specific GPUs, we
find that up to 21% of jobs in our production traces do not do
so. These fungible workloads can work with any GPU types
in different execution runs. Lyra can launch these jobs on
the loaned inference servers rather than waiting for training
servers. To ensure feasibility, we may need to adjust the
local batch size of the training job so that the models and
the intermediate data can fit into the smaller inference GPU
memory. We increase the number of workers so that the
global batch size does not change to ensure the same model
performance. This is straightforward since we know the GPU
memory differences.

Another more aggressive way to exploit the loaned servers
is to run a training job on heterogeneous GPUs, i.e. run
on both training and inference GPUs (e.g. V100 and T4) at
the same time. Heterogeneous training further improves
scheduling flexibility with more potential gains. However, it
requires delicate systems and algorithm support to workwell,
since the workers have to adopt different hyperparameter
settings and inherently progress at different paces [4, 33, 39,
58]. Given that heterogeneous training remains an active
research topic, our production training system only provides
experimental support for it at the moment. Lyra’s design
does not depend on it, and we evaluate its effect in §7.2
when it is enabled for a small fraction of our jobs with a
performance penalty.

2.2 Elastic Scaling for the Full Potential
To better cope with the constantly changing cluster capac-
ity and further exploit the loaned inference resources, Lyra
considers elastic scaling. Recently, elastic scaling has been
introduced into ML frameworks [16, 36, 42] where a job can
take a variable number of workers according to resource
availability. One can even adjust the number of workers
on-the-fly when the job is running.

Elastic scaling can greatly facilitate capacity loaning. With
additional resources, training jobs can dynamically scale out
to use more workers with more inference GPUs to acceler-
ate training (provided they are running on inference GPUs
already). When the cluster experiences high loads, some jobs
could scale in to free some servers. In addition, when va-
cating the inference servers so they can be returned, the
scaling-in operation reduces the need to completely preempt
the jobs which incurs high overheads with checkpointing,
re-launching containers, etc.

407

EuroSys ’23, May 8–12, 2023, Rome, Italy Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong Guo, and Cong Wang

(a) ResNet (b) VGG

(c) BERT (d) GNMT-16

Figure 3. Throughput of four elastic training jobs using Tesla V100 GPUs.
The workers are doubled every five epochs, starting from 1 worker. In our
testbed, each server hosts 8 GPUs connected by NVLink. Servers use 100G
InfiniBand interconnects. Each worker container uses 2 GPUs.

An acute reader might be wondering about the feasibility
and benefit of elastic scaling in general. Indeed, besides the
scalability issue of distributed training systems [18, 20, 41,
57], when we change the number of workers on-the-fly, the
training hyperparameters may have to be updated as well.
This can be fairly complex: for example, simply fixing the
local batch size and linearly increasing the global batch size
may impede the model convergence [11].

Thus in Lyra, elastic scaling is only adopted for jobs that
scale well to the number of workers without updating the
local batch size. Existing studies [1, 5, 19, 26, 29, 30, 45, 59]
show that certain models like ResNet [15] and BERT [8] sat-
isfy this requirement. We also find that, as shown in Figure 3,
ResNet-50 [15], VGG16 [47], BERT [8], and GNMT-16 [54]
all enjoy good throughput scalability and are well-suited for
elastic scaling. Our traces reveal that the large jobs (∼5%
of all jobs) from these model families account for 36% of
training cluster resources with an average running time of
14.2 hours, suggesting ample potential gains using Lyra. For
these jobs, Lyra also restricts itself to limited elasticity where
the worker number varies within a range.

2.3 Existing Cluster Schedulers
Much prior work exists on GPU cluster scheduling amid the
proliferation of DL workloads. Lyra differs in two aspects.
First, capacity loaning represents a new angle to cluster

scheduling that few have studied. Though the shared infras-
tructure is exploited by recent systems [28, 49, 50, 52, 53, 62],
their focus is to schedule different types of workloads in
a single cluster. Lyra instead focuses on virtually loaning
resources between two different clusters. Specifically, it con-
siders the problem of how to reclaim the transient on-loan
resources while minimizing its negative impact on training
jobs running on them (§4), which has not been considered

Job Queue
② Jobs & Resource

Resource
Orchestrator

Job Scheduler
③

Allocate

(d) Notify Preemption Reclaim
(a) Loan/Reclaim

Amount

Job Profiler
①

Profile
(b) Select
to Reclaim

④ Preempt⑤ Interrupted Jobs

Training Inference(c)
Loan

Reclaim

Figure 4. Lyra system architecture. Solid lines indicate control flow and
dashed ones data flow. Red lines represent capacity loaning workflow, while
blue ones elastic scaling workflow. Each square represents a GPU server;
the gray ones are in use.
before. Further, Lyra takes advantage of the elasticity of
training jobs to better utilize the dynamic cluster resources.
Second, some recent studies also considered scheduling

elastic jobs. Gandiva [55] adopts an opportunistic approach
to grow or shrink the number of GPUs used by a job with-
out considering cluster-wide efficiency. AFS [18] greedily
prioritizes jobs with the highest marginal throughput gain
per GPU. Pollux [43] co-optimizes resource allocation and
training hyperparameters to achieve high resource efficiency.
Compared to them, Lyra exploits the interplay between

elastic scaling and capacity loaning to further improve the
performance. In terms of technical approach, Lyra preserves
the problem nature of scheduling elastic jobs and treats it
as a variant of the knapsack problem, enabling it to make
globally good allocation decisions and outperform greedy
local heuristics in prior work. Though Lyra does not consider
tuning hyperparameters, it can be readily integrated into
Lyra (§7.4).

3 Design Overview
In this section, we describe Lyra’s overall architecture and
the key design questions we need to address.
Overall architecture. Lyra is a GPU cluster scheduler that
exploits capacity loaning with elastic job scheduling. It runs
on top of a cluster resource manager such as YARN [51] and
Kubernetes [23] to execute its decisions.

Figure 4 presents Lyra’s architecture. At the cluster level,
the resource orchestrator receives instructions from the infer-
ence cluster about the number of servers to loan or reclaim
(a), determines which servers shall be returned for reclaiming
(b), and commands the underlying resource manager to move
the selected servers virtually across management boundaries
(c). When the orchestrator reclaims on-loan servers, it may
need to preempt the training jobs running on them (d). Job
preemption is executed via the job scheduler.

At the job level, jobs are submitted to the queues. The job
profiler estimates the workload 1 after jobs are enqueued.
The job scheduler 2 periodically collects job status and re-
source usage of the training cluster. Then it 3 computes
the resource allocation and placement decisions for each job.
Meanwhile, it gets preemption instructions from the orches-
trator, interrupts the running jobs 4 , and puts them back
into the job queues 5 . Job launching, scaling and interrup-
tion actions are again executed by the resource manager. Job

408

Lyra: Elastic Scheduling for Deep Learning Clusters EuroSys ’23, May 8–12, 2023, Rome, Italy

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

Figure 5. A reclaiming example. Each server has 8 GPUs. GPUs in-use are
indicated by the job ID inside each square.
Server # running jobs sum of job’s GPU fraction sum of job’s server fraction

1 1 0.5 0.5
2 1 0.5 0.5
3 1 1 1
4 1 0.8 0.5
5 2 0.4 1
6 1 0.8 0.5

Table 1. Different definitions of server preemption cost for the reclaiming
example in Figure 5.

scheduler works periodically in a much smaller interval than
the orchestrator in order to better handle job dynamics.

Since Lyra mainly deals with the training cluster and does
not interfere with inference cluster scheduling, we use “jobs”
to simply refer to training jobs hereafter without ambiguity.
The basic unit of capacity loaning is a physical server. This is
to prevent training jobs from interfering with the inference
jobs on the same server.
Key questions. Lyra’s design is centered around two key
questions.
• Server reclaiming. Which servers should be returned so
that the number of preempted jobs is minimized, when
some on-loan servers need to be reclaimed?

• Job scheduling. How should we determine resource allo-
cation across jobs, and how do we place a job’s workers
on servers, when some jobs are elastic and some servers
are loaned from the inference cluster?
We now present howwe address themwith Lyra’s detailed

design in §4 and §5, respectively.

4 Capacity Loaning and Reclaiming
Lyramoves resources dynamically across inference and train-
ing clusters to improve utilization and training performance.
Assumptions.We presume that the inference cluster sched-
uler dynamically estimates the capacity needed to meet the
latency, GPU utilization [24], or other performance targets,
based on the predicted inference traffic [7, 14, 44]. Inference
workloads are able to grow or shrink their containers along
with the incoming traffic. Inference scheduler informs Lyra’s
resource orchestrator of (1) the amount of resources avail-
able for loaning when traffic is low, and (2) the amount of
resources to be reclaimed from training in busy hours if
any. That is, the inference cluster scheduler autonomously
determines when and which servers to lend, and when and
how many servers to ask back, based on its own policy. The
inference performance is not affected by capacity loaning.

The key question for the training scheduler is the reclaim-
ingmechanism asmentioned in §3, i.e. which on-loan servers
should be returned given the number of servers needed by

the inference scheduler. This matters because reclaiming a
server entails preempting all its running jobs immediately. A
job with checkpointing would incur overheads to save and
load the checkpoint when resuming training later. If the job
does not perform checkpointing [31], which is common in
practice in our environment, its entire progress is lost and
training has to restart from the very beginning. Clearly, both
are undesirable and we strive to minimize preemptions by
strategically picking the servers to return.
We propose a solution to reduce the negative impact on

the training jobs hosted by the on-loan servers.
Minimizing preemptions.Vacating an on-loan servermeans
its jobs are preempted in a cluster with no elastic jobs. We
start with how Lyra minimizes inevitable preemption under
this case. and will explain how elastic scaling plays its part
in minimizing preemptions in §5.3.

Denote the number of servers that need to be returned at
this point as 𝑁𝑅 . Our problem is to pick 𝑁𝑅 on-loan servers—
which host inelastic jobs’ workers—in order to minimize
preemptions. More concretely, we choose to minimize the
number of preempted jobs so fewer users are affected. This
implies when reclaiming a server, we prefer the one with a
big job to the one with a few small ones.

The problem closely resembles the classic knapsack prob-
lem (i.e. the 0-1 knapsack problem): The number of servers to
reclaim𝑁𝑅 can be considered as the capacity of the knapsack;
each server consumes one unit capacity, and the number of
running jobs is each server’s preemption cost (i.e. value).
However, the server’s preemption cost actually has inter-
dependencies that make the problem more difficult.

Consider an example as depicted in Figure 5. Table 1 shows
each server’s preemption cost as the number of its run-
ning jobs (second column). Suppose we need to reclaim two
servers. Servers 1 and 2 are obviously the optimal choice
with one preemption. Yet the corresponding knapsack prob-
lem would select any two 1-cost servers such as 3 and 4
which lead to more preemptions. The issue here is that in
our problem the costs of servers are coupled when they host
the same job(s), whereas in the 0-1 knapsack problem the
cost is independent of each other. Reclaiming server 1 for
instance results in an idle server 2 whose cost becomes 0
instead of 1.

Knapsack problem with dependent item values is known
to be NP-hard [32]. When 𝑁𝑅 is one server, selecting the one
with the fewest preemptions is simply by iterating all the
on-loan servers. Given an 𝑁𝑅 larger than a single server, we
propose to resolve the dependency by treating it as part of
the server preemption cost. One possible way is to define
server preemption cost as the sum of the GPU fractions of
each job on the server. For instance, server 4’s cost would be
0.8 as it hosts 80% of job c’s GPUs, and server 5’s cost is 0.4
(0.2+0.2) as shown in Table 1. One can immediately see that
this does not work well as it does not capture the job count.
It causes server 5 to be selected with the least cost, which

409

EuroSys ’23, May 8–12, 2023, Rome, Italy Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong Guo, and Cong Wang

Job 𝑤𝑚𝑖𝑛 𝑤𝑚𝑎𝑥 Min. running time
A 2 6 50
B 2 6 20

Table 2. Two elastic jobs and their demand information. Jobs complete in
min. running time when allocated with 𝑤𝑚𝑎𝑥 workers.

actually leads to two preemptions. Thus we choose to define
server preemption cost as the sum of the server fractions of
each job as shown also in Table 1. Server 4’s cost would thus
be 0.5 as it hosts job c and the workload of job c is shared by
two servers as shown in Figure 5. This way server 5’s cost is
0.5+0.5=1, i.e. the highest.

Once the preemption cost of each server is computed, the
orchestrator selects the servers using the following heuristic:
it iteratively picks the server with the lowest preemption cost,
preempts its jobs by removing them from all their servers,
and updates the cost of these servers correspondingly, until
𝑁𝑅 servers are vacated. In case of a tie in the preemption
cost, we additionally consider the collateral damage incurred
if the server is reclaimed.

5 Job Scheduling
Lyra schedules jobs—both inelastic and elastic—to reduce
overall JCT by utilizing resources as efficiently as possible.
We start by explaining the challenge due to elasticity (§5.1).
Then we present the solutions to the two facets of our sched-
uling problem. The first is resource allocationwith both elastic
and inelastic jobs, i.e. how to determine the number of work-
ers each job gets (§5.2); the second is placement, i.e. which
servers to place a job’s workers on (§5.3).

Throughout this section, we assume that training through-
put scales linearly with the number of workers within the
scaling range, i.e. job’s running time is inversely proportional
to resources allocated, as discussed in §2.2.

5.1 Challenge of Elasticity
Job elasticity presents a unique challenge to resource allo-
cation. Conventional schedulers either deal with jobs with
fixed demands, or ones that can arbitrarily scale [18, 43].
However, for jobs with limited elasticity [36], the question
of how to arbitrate resources so as to minimize average JCT
is intricate.
Let us consider a simple example as shown in Table 2.

There are two elastic jobs with different minimum running
times when allocated their maximum demand. Assume the
cluster has eight workers in total. Table 3 shows three com-
mon allocation strategies and the corresponding JCT per-
formance. In solution 1, we favor job A by giving it the
maximum demand; in solution 2, we favor B instead; and in
solution 3 we equally allocate resources to them. All three
strategies lead to different JCTs and the difference between
the worst and best is 24%, demonstrating that inefficient
allocation can lead to poor JCT performance.

Solution Initial allocation JCT Average
JCTA B A B

1 6 2 50 53.33 51.67
2 2 6 63.33 20 41.67
3 4 4 60 30 45

Table 3. Possible resource allocation results for the two jobs when they
share a cluster that can host 8 workers. Only the initial allocation is shown;
once the first job finishes, the other is immediately allocated more resources
as much as possible. Three solutions lead to very different JCTs.

Job 𝑤𝑚𝑖𝑛 𝑤𝑚𝑎𝑥 Min. running time JCT when favored Avg. JCT
A 2 3 100 A: 100, B: 24 62
B 2 6 20 A: 106.67, B: 20 63.33

Table 4. A counter example with two elastic jobs, where prioritizing A with
longer running time is actually better for JCT.

Classic algorithms are not optimal. One may be won-
dering if the classic shortest (or smallest) job first strategies
would work here. At least in the example of Table 2, the
optimal allocation is indeed to first satisfy job B, which has
the shortest running time. Yet, we can construct a counter
example as depicted in Table 4 to show that this does not
always work. We slightly modify job A to have a maximum
demand of 3, and minimum running time of 100; the other
setup is identical to Table 2. In this case, if we satisfy B first,
the average JCT (63.33) is actually worse than satisfying A’s
demand first (62).
Intuitively, shortest job first, or SJF, is designed for fixed

job running times with the intuition that each job should be
given the least queuing time, which is the only variable in
computing JCT. In our case, job running time itself varies
along with the resource allocated, which in turn affects the
overall JCT and makes the problem more complex.
More specifically, the above examples reveal two charac-

teristics of elastic job’s running time that SJF cannot handle.
(1) Elastic scaling complicates the job sorting decision of SJF.
Since job running time varies with the resources allocated, it
is no longer apparent that we simply sort them based on their
minimum running time. As shown already, doing so does not
lead to an optimal result. (2) The resource efficiency of each
job is different. In Table 4, job A has a larger workload (i.e.
product of maximum demand and minimum running time)
than B, implying that the running time improvement of A is
larger than that of B if both are given the same number of
workers. Even though the resource allocation difference is
merely one when we prioritize different jobs, job A’s running
time contributes to a 6.67-second JCT reduction while job
B’s only increases by 4 seconds.

In the simplest two-job case, we can analyze the outcome
of different allocation strategies. The complete theoretical
analysis is omitted here for brevity and can be provided upon
request. Allocation in the general case is undoubtedly more
complicated with more elastic jobs plus inelastic jobs, as
the optimal strategy requires enumerating the exponentially
many possible resource allocations. Our quest in the follow-
ing is, therefore, to find a good heuristic for the problem.

410

Lyra: Elastic Scheduling for Deep Learning Clusters EuroSys ’23, May 8–12, 2023, Rome, Italy

5.2 Two-Phase Resource Allocation
Intuition: Prioritize inelastic workload. To ease the chal-
lenge of elasticity, our insight is that an elastic job has two
types of demand: a base demand that is inelastic in nature,
i.e. the minimum demand, and a flexible demand that is elas-
tic. They should be treated separately: The base demand
essentially corresponds to an inelastic job whose allocation
strategy is binary, and not allocating resources to it incurs
more queuing delay to the job. In contrast, the flexible de-
mand can be unfulfilled without serious impact since the job
is still making progress with base demand.

Therefore, we treat the inelastic workload, including elas-
tic jobs’ base demands and inelastic jobs, as the first class
citizen. We schedule them first with all available resources to
minimize the average JCT. This also avoids starvation. Then
in phase two, we consider the flexible demand of elastic jobs
to fully utilize the remaining resources from phase one.
Setup and assumptions.We focus on solving the offline set-
ting myopically where the set of jobs and resources are given,
and cope with the job dynamics and cluster capacity change
by periodically performing scheduling in high frequency.
This is common in the literature [10, 60]. Our scheduling
solution is non-preemptive to minimize disruptions to train-
ing; preemption only happens during reclaiming when it
becomes inevitable as in §4. Thus at a scheduling epoch,
the set of available resources refers to idle GPUs and GPUs
being used by flexible workers for resizing (including on-
loan GPUs), and the set of jobs includes those waiting in the
queue and running elastic jobs (only flexible workers). The
on-loan inference GPUs are normalized relative to training
GPUs when calculating the resource capacity.
We rely on job’s running time information (minimum

running time for elastic jobs), which can be predicted with
profiling and ML methods [17, 61].
Two-phase heuristic design.We now elaborate our heuris-
tic. The problem in phase one is how to minimize average
JCT for jobs with fixed demands and known running times,
for which we adopt the shortest job first (SJF) policy [9]
which is a sensible and commonly used solution. As long
as there are idle GPUs and pending jobs, we schedule job
𝑗∗ with the smallest running time. If the demand of 𝑗∗ ex-
ceeds the remaining capacity, we remove it from the pool
and continue.
Phase two is more interesting. We must determine the

number of additional GPUs elastic jobs get to maximize
the JCT reduction. Elastic jobs here include those already
running. It turns out this problem can be transformed into
multiple-choice knapsack problem [48]: The knapsack’s ca-
pacity is the number of remaining GPUs. An elastic job 𝑗 is a
group with𝑤𝑚𝑎𝑥

𝑗 −𝑤𝑚𝑖𝑛
𝑗 items, each representing a possible

allocation for 𝑗 ’s flexible demand. An item’s weight is the
number of GPUs in this allocation, and its value is its JCT
reduction over the job’s maximum running time. Figure 6

Job BJob A

1 1
2

3
4

Group Item Weight JCT Reduction Value
A 1 2 50

B

1 1 20
2 2 30
3 3 36
4 4 40

Figure 6. Item weights and JCT reduction values for jobs in Table 4. Here,
we assume job A needs 2 GPU per worker and job B 1 GPU per worker.

illustrates this transformation with the two-job example in
Table 4. The problem is to pack the items into the knapsack
so that the total value is maximized, with the constraint of
taking exactly one or zero items from each group.

The multiple-choice knapsack problem, similar to the clas-
sical knapsack, is NP-hard and often solved by dynamic
programming which runs in pseudo-polynomial time [48].
With a moderate number of GPUs and jobs, dynamic pro-
gramming can usually solve the instance efficiently. We find
that the longest solution time in our evaluation is 0.02s with
354 items and 245 GPUs which is much shorter than a typical
job’s time use.

5.3 Worker Placement
Given the allocation results, i.e. number of workers each job
gets, we still need to determine the placement of each worker
to complete scheduling. Our goal is to reduce fragmentation.
The primary concern is the mix of inelastic and elastic jobs
as well as the transient on-loan servers with different GPUs.

Our fundamental strategy is bin packing with best-fit de-
creasing (BFD) heuristic [37]. Jobs are sorted in decreasing
order of their per-worker GPU demand as GPU is most likely
the bottleneck resource for training. Starting from the largest
job, we place each worker of the job into a non-empty server
that best fits its demand; if none has sufficient remaining
resources, we place it on a new server. If the job is elastic, we
prefer to place it on inference servers in order to maximize
the potential for scaling in during reclaiming and reduce job
preemptions. If it is inelastic, we prefer to place it on training
servers. When placing elastic jobs, we also place their base
and flexible demands on separate groups of inference servers
so that during reclaiming (§4), Lyra can release the server
group for flexible demands first without any preemption to
see if this alone is sufficient.

6 Implementation
We have implemented a prototype of Lyra with about 3500
lines of Python. The prototypeworkswith our existing YARN
and Kubernetes deployment to move servers across clusters
virtually, manage worker containers for training, and moni-
tor the status of servers and workers.

We highlight key details of the implementation as follows.
Interface for capacity loaning. During loaning, resource
orchestrator need to update the available resource of each
cluster once the operation is decided. We create a whitelist
API to facilitate capacity loaning operations. Both Lyra’s

411

EuroSys ’23, May 8–12, 2023, Rome, Italy Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong Guo, and Cong Wang

scheduler and the inference scheduler maintain their own
whitelist of servers under their control. During loaning,
the orchestrator adds on-loan servers to Lyra scheduler’s
whitelist according to inference scheduler’s instructions. In
reclaiming, the orchestrator removes the selected servers
from Lyra’s whitelist after its scheduler confirms they no
longer have running workers.
Inference resource usage predictor. We develop a sim-
ple NN model to predict the inference resource usage. The
predictor is an LSTM model with a window size of 10 and
two hidden layers. We apply Adam optimizer and use MSE
to compute loss. We predict the resource usage of the next
five minutes and compare the average resource usage to the
ground truth. The average loss is 0.00048 over 1440 data
points. With the predictor, Lyra can initiate reclaiming de-
cisions in advance before the inference resource usage in-
creases.
Data locality and resource isolation. Lyra performs ca-
pacity loaning only between clusters in the same datacenter
to ensure the network bandwidth across servers is consis-
tently high [2, 46]. Also, the basic unit of loaning is a physical
server so co-location of inference and training jobs is not
possible, and no additional isolation mechanisms are needed.
Enable elastic scaling.We enable elastic training in our en-
vironment with a few modifications to the ML frameworks.
Chiefly, we embed a controller process to each elastic job
that coordinates the worker join and departure. As presented
before, an elastic training job has a base demand and a flexi-
ble demand. Base demand guarantees the gang scheduling
of minimum requests and the flexible demand shortens the
running time whenever possible while preserving loss con-
vergence. Recent work [36, 56] developed more complete
scaling solutions that our implementation could also utilize.
Handle heterogeneous GPU training. As discussed in §2,
a small portion of training jobs can run on heterogeneous
GPUs experimentally. When this feature is turned on, Lyra’s
job scheduler considers these jobs with the lowest priority
on the remaining servers after all other jobs are scheduled.
The actual scheduling logic for these jobs remains the same
as we discussed in §5, except that if they are elastic, their
base demands are placed on training servers, and flexible
demands on inference servers whenever possible.

7 Evaluation
We evaluate Lyra using large-scale simulations and testbed
experiments with traces from our production clusters.

The highlights of our findings are:

• In simulations, Lyra shows salient benefits with 1.53x and
1.48x reductions on average queuing time and JCT, respec-
tively, compared to the baseline FIFO scheduler. When
working alone, capacity loaning has 1.39x and 1.31x reduc-
tions in average queuing time and JCT, and elastic scaling
has 1.35x and 1.38x reductions in the same metrics.

• Compared to state-of-the-art scheduler Pollux [43], Lyra’s
scheduling algorithm brings 1.35x average queuing time
and 1.42x average JCT reductions when both consider
tuning the training hyperparameters. Lyra’s reclaiming
algorithm performs comparably to the optimal solution
with only 1–3ms running time.

• In testbed, Lyra improves average job queuing time by
1.38x and average JCT by 1.22x over the Baseline without
loaning or scaling. Preemption only happens to ∼9% of the
jobs in reclaiming with an average 63-second overhead.

7.1 Setup
Traces.We rely on a 15-day job trace from one of our produc-
tion training clusters with 3,544 GPUs (443 8-GPU servers).
There are 50,390 training jobs, and job running time range
from minutes to days. We also use a GPU utilization trace
from the inference cluster for the same time period. Part of
the traces has been shown in Figures 1 and 2 already.
Simulator.We built a discrete-event simulator for evaluat-
ing Lyra at scale using job traces from production. It simu-
lates the cluster scale, hardware configuration, and all job
events including arrival, completion, scaling, and preemption.
Job’s running time in the simulator is derived from actual
training time in the traces. For elastic jobs, we compute its
actual training time based on the traces which is inversely
proportional to its resource allocation as discussed in §5. We
also consider jobs with imperfect scalability in §7.2.
Testbed.Our testbed consists of four 8-GPU training servers
and four 8-GPU inference servers. Each training server uses
Nvidia V100 GPUswith 32GBGPUmemory and has 92 vCPU
with 350 GB memory. Each inference server uses Nvidia T4
GPUs with 16GB GPU memory and has 92 vCPU and 210
GB memory. The resource management framework is YARN,
and training data is stored in HDFS.
Headroom in inference cluster. To handle unexpected
traffic surges in the inference cluster, we leave a headroom
of 2% of the inference cluster capacity. These machines are
never to be loaned. This is chosen based on our empirical
observations. Lyra’s resource orchestrator runs every five
minutes; and we find that the median inference traffic burst
within five minutes is ∼2% of the inference cluster capacity
based on our GPU utilization trace (§2.1).
Training job types. Based on the resource requirements,
training jobs can be:
• Fungible: 21% jobs can be executed on different GPU types
in different runs, i.e. ideal for capacity loaning.

• Elastic: Jobs can take a variable number of workers that can
be adjusted on-the-fly. They are ideal for elastic scaling.

• Heterogeneous: Jobs can run on different GPU types at
runtime.

Scenarios. We consider various scenarios with different
degrees of support for elastic scaling and heterogeneous
training, both of which are not widely used today.

412

Lyra: Elastic Scheduling for Deep Learning Clusters EuroSys ’23, May 8–12, 2023, Rome, Italy

Scenario Scheme Queuing Time (s) JCT (s) GPU Usage Preemption

Mean Median 95%ile Mean Median 95%ile Training Overall 1 Ratio 2

1 — Baseline 3 3072 55 8357 16610 791 82933 0.72 0.52 0

2 Basic

Lyra

2010 26 3358 11236 568 56477 0.86 0.65 12.24%
3 Advanced 1835 24 3238 10434 525 56553 0.86 0.68 7.35%
4 Heterogeneous 1944 27 3574 12113 604 57392 0.78 0.64 11.23%
5 Ideal 1157 22 3204 8891 422 41146 0.93 0.72 5.72%

6
Capacity Loaning
(Basic)

Opportunity 2788 22 5256 14828 744 67843 0.74 0.63 19.35%
7 Random 2901 23 5478 14678 731 62923 0.76 0.64 20.89%
8 SCF 2783 24 4994 14923 695 62456 0.76 0.64 17.48%
9 Lyra 2212 23 3427 12947 662 57987 0.76 0.65 14.94%

10
Elastic Scaling
(Basic)

Gandiva 3035 49 6632 15912 755 80567 0.79 NA NA
11 AFS 2284 47 3488 15045 686 60883 0.95 NA NA
12 Pollux 2791 58 5883 14534 721 72123 0.93 NA NA
13 Lyra 2275 47 3475 12048 602 57597 0.92 NA NA
14 Lyra+TunedJobs 2054 43 2749 10229 564 52458 0.91 NA NA

(1) Overall GPU usage denotes the GPU utilization in both training and inference cluster. It is applied when the training cluster size is changing in capacity loaning.
(2) Preemption ratio is the ratio between the total number of preemptions and the total number of job submissions.
(3) No capacity loaning or elastic scaling is considered. We use the FIFO job scheduler in Baseline §7.1.

Table 5. Simulation results in different scenarios using different schemes.

• Basic: Here fungible jobs are used for capacity loaning (21%
of total training load), and elastic jobs are used for elastic
scaling (∼5% of all jobs accounting for 36% of total training
resources). No heterogeneous training. This corresponds
to the status quo in our environment (recall §2.1) and is
the default scenario.

• Advanced: On top of Basic, 10% of jobs can use hetero-
geneous GPUs with non-ideal performance. The jobs are
randomly selected and distributed evenly across 15 days.
Specifically, heterogeneous training jobs only achieve at
most 70% of the ideal results. We experimentally confirm
such a performance gap which has also been reported by
prior work [4, 39].

• Heterogeneous: Different from the Advanced scenario, we
disable the 21% fungible training load and consider the
10% heterogeneous training non-ideal performance solely.

• Ideal: All jobs support scaling and heterogeneous training
with ideal performance. For jobs without a pre-defined
scaling range, we consider its requested demand to be the
base demand, and its scaling range is twice that.

Schemes compared. We compare Lyra to the following
schemes that represent the state-of-the-art and/or the most
common solutions to each sub-problem of Lyra.

We first compare capacity loaning to a simple opportunis-
tic scheme:

• Opportunistic Scheduling: We disable capacity loaning, and
queue the 21% fungible training jobs to the inference clus-
ter with a lower priority than inference jobs, so they can
opportunistically use the idle servers.

We also consider two basic strategies for server reclaiming:

• Random: On-loan servers are randomly selected.

• Smallest (Job) Count First (SCF): The top-𝑘 servers that
host the smallest number of jobs are chosen.

We consider several solutions to elastic scheduling. Some are
slightly modified to conform with our setup for elastic jobs.
• Gandiva [55]: Elastic scaling is also mentioned in Gan-
diva. It exploits elasticity by scaling out jobs to utilize the
remaining resources on servers whenever they are under-
utilized. We consider under-utilization to be the period
when there are available resources but no pending jobs.

• AFS [18]: Starting from one GPU per job, it iteratively
adds one more GPU to the job with the largest marginal
throughput gain. We implement AFS by allocating base
demand to each job first and allocating one more worker
to the job with the largest throughput gain per GPU.

• Pollux [43]: Pollux computes the goodput of training jobs
and applies genetic algorithms to find the resource alloca-
tion. It also adjusts batch size to maximize goodput and
learning rate based on Adascale [21]. We adopt the model
distribution listed by Pollux to capture the model goodput.
We notice that Pollux’s idea of tuning the hyperparam-

eters according to allocated resources is orthogonal to job
scheduling. To compare with Pollux fairly, we integrate this
idea into Lyra in §7.4:
• Lyra+TunedJobs: Use Lyra’s job scheduler and adapt Pol-
lux’s job agent for job-level hyperparameter-tuning within
the scaling range. Job agent adjusts model batch size and
learning rate whenever job resource allocation changes.

Lastly, our baseline scheme is:
• Baseline: A FIFO cluster scheduler with no capacity loaning
or elastic scaling.

Metrics. We consider queuing time and JCT to evaluate
Lyra. We report Lyra’s performance improvements using the

413

EuroSys ’23, May 8–12, 2023, Rome, Italy Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong Guo, and Cong Wang

Figure 7. Overall resource usage rate of
Baseline and Lyra in Basic and Ideal scenario.

Figure 8. Average queuing
time and JCT against Base-
line in imperfect scalability.

following method:

Reduction =
Duration of a scheme compared

Duration of Lyra
Both the average queuing time and the average JCT are the
arithmetic mean.

7.2 Overall Performance in Simulation
We evaluate Lyra thoroughly with large-scale simulation.
We provide its overall performance here. Analyses of its
individual components are presented in §7.3 and §7.4.
Simulator calibration and fidelity. To first establish its
fidelity, we evaluate our simulator against the prototype
system in a testbed with a small trace.
We calibrate our simulator by comparing the scheduling

logs between the testbed and the simulator. We carefully
build several tiny training job traces (20 minutes – 2 hours)
to cover all possible job and resource allocation status. We
run the traces on the testbed and record the timestamp of
every activity (e.g. job launching, start and end of training,
scheduling decision). The same traces are replayed on the
simulator. We compare the timestamp and decision of each
activity, and find the first wrong decision or the first activity
with a larger-than-two-seconds time difference. We resolve
the time difference and replay the trace repeatedly until all
activities on the simulator match with the testbed records.
We add a fixed overhead according to our testbed exper-

iments (§7.5) whenever a job is preempted in simulation.
The simulation results are similar to testbed results, with a
difference of 6.2% and 3.4% in average and 95%ile JCT, and
3.5% and 4.4% in average and 95%ile queuing time. The small
difference mainly stems from the overhead of placing and
removing workers and moving resources between clusters
which the simulator does not capture.
Cluster and workload. We use the full 15-day trace and
the same cluster configuration as our production clusters.
Queuing time, JCT, and cluster usage. Table 5 records the
performance of Lyra in different scenarios. Overall, queuing
time and JCT are improved by 1.53x and 1.48x when com-
pared to Baseline in the Basic scenario (row 2). The overall
cluster usage is improved by 25%. In the Advanced case with
non-ideal heterogeneous training, queuing time and JCT
are reduced by 1.67x and 1.59x over Baseline and by 1.10x
and 1.08x over Lyra itself in the Basic scenario. In the Ideal
case which represents the performance upper bound, the
average combined usage of inference and training clusters

Scheme Queuing Time (s) JCT (s)
Mean Median 95%ile Mean Median 95%ile

Baseline 4573 1283 23351 11547 2122 60170
Lyra 1119 274 7256 6887 1373 35776

Table 7. Queuing time and JCT of jobs running on on-loan servers.

is improved by 38.5% (to 72%) over Baseline. Compared to
the Basic case, average queuing time and JCT in the Ideal
case show additional 27% and 14% improvements by virtue of
complete job flexibility and perfect performance scalability.

Since the training cluster’s resource is dynamically chang-
ing, we depict the hourly combined cluster usage for 48 hours
in Figure 7. The Baseline usage curve shows a clear diurnal
pattern mostly attributable to the inference cluster. When
capacity loaning is enabled, Lyra improves the usage and
flattens the curve; the most significant improvement is a 14%
usage increase between Basic and Baseline. Notice the com-
bined usage does not reach 100% since the inference cluster
needs a 2% headroom to gracefully handle the latency SLA.
How scaling helps capacity loaning? We now seek to
understand how our two key ideas interact and complement
each. Scaling helps capacity loaning, especially in reducing
preemptions in reclaiming the on-loan servers. With elastic
scaling disabled, Table 5 shows that preemption as percent-
age of running jobs increases from 12.24% (row 2) to 14.94%
(row 9). We also observe that on average the flexible server
group (hosting elastic workers only) alone satisfies 53.5% of
reclaiming demand each time. With more aggressive flexi-
bility (row 5), preemption is reduced to 5.72% and satisfies
83.5% of reclaiming demand each time.
In §5.3, we discussed how Lyra places elastic and inelas-

tic jobs with on-loan servers in the cluster. In Table 6, we
compare the placement performance in different scenarios
without special treatment to elastic jobs, i.e. instead of group-
ing their flexible demand and placing them to on-loan servers
as much as possible, the scheduler places them to training
servers first just like inelastic jobs. The most significant dif-
ference is in preemption ratio. Without grouping the flexible
demand, preemption ratio increases by up to 91% in Ideal
(compared to Table 5 row 5). Preemptions also incur degra-
dation to job runtime; for example average queuing time and
JCT in the Basic case increase by up to 11.1% and 15.2%.
Impact of imperfect scaling. Thus far we have assumed
linear scalability of elastic jobs based on our empirical anal-
ysis in §2.2. Here we also evaluate Lyra when elastic jobs
scale non-linearly with throughput loss. When one more
worker is added to a job, we add a 20% loss to the throughput
brought by this worker. Figure 8 presents Lyra’s gains over
Baseline with non-linear scaling. In Basic, average queuing
time and JCT are 3.03% and 5.82% higher than those with
linear scalability (Table 5 row 2). The degradation is mild
because most training jobs are inelastic in Basic scenario
and Lyra always satisfies their base demands. In Ideal, JCT
is inflated by 10.54% to 9,828 seconds (compared to Table 5

414

Lyra: Elastic Scheduling for Deep Learning Clusters EuroSys ’23, May 8–12, 2023, Rome, Italy

Scenario Avg.
Queuing Time (s) Avg. JCT (s) Preemption

Ratio
Basic 2231 13872 13.22%
Advanced 1944 12474 10.04%
Ideal 1273 9982 10.93%

Table 6. Performance without special placement
of elastic jobs. Lyra naively places jobs based on
the BFD heuristic.

Figure 9. The daily average resource usage of
on-loan servers (monitored every 5 minutes).

Figure 10. Preemption ratio and average collateral
damage (defined in §7.3, Reclaiming heuristic).

Figure 11. Average queuing time and JCT
against Baseline in Heterogeneous.

Figure 12. Average queuing time and JCT against the re-
spective Baseline in Basic and Ideal for ten 10-day traces.

Figure 13. Average queuing time and JCT when
jobs with checkpointing increase in Ideal.

row 5) due to the increase in job running time; the gain over
Baseline is ∼1.7x.
Heterogeneous training. In Table 5, Lyra in the Heteroge-
neous scenario shows 1.58x and 1.37x reduction over Base-
line in average queuing time and JCT. However, the preemp-
tion ratio is only 1% lower than Basic compared to 4.89%
reduction in Advanced. We also manually enable heteroge-
neous training for more jobs in Figure 11. Intuitively, more
jobs capable of heterogeneous training could bring more
benefits to cluster efficiency. Job resource allocation could
be more flexible. However, heterogeneous training leads to
throughput loss and uses more resources to maintain the
training progress than homogeneous training. Moreover, the
availability of inference servers is subject to inference clus-
ter traffic, and jobs may have to wait when few resources
are available. Therefore, the reduction of average queuing
time approaches its asymptotic limit when 50% or more jobs
support heterogeneous training.
Reproducibility of results. We also validate the repro-
ducibility of the results. Here we compose ten 10-day train-
ing job traces based on the full 15-day trace in §7.1 using the
bootstrapping technique. The cluster size remains the same.
Figure 12 shows the results. Lyra’s gains in queuing time
and JCT are 1.45x and 1.44x in Basic, and 2.47x and 1.78x in
Ideal. Lyra’s performance is better when the training cluster
has a long job queue. On weekends, training cluster is less
busy. We notice that the gain in traces No.0 and No.4 is lower
(10%) than others because two weekends are selected. On
weekends, training cluster is less busy. Lyra’s performance
is better when the training cluster is busy and has a long
job queue. Excluding these two traces, Lyra’s improvement
is statistically significant and consistent with results in Ta-
ble 5 (rows 2 and 5). The average JCT improvement in Basic
and Ideal shows a less than 4% gap with the performance
improvement on the complete trace.

7.3 Deep-Dive: Capacity Loaning
We now dive into the two components of Lyra. We first
focus on capacity loaning, aiming to understand its sources
of gain and how our knapsack-based reclaiming heuristic
compares to other schemes. The results here are obtained
without elastic scaling.
Sources of gain. Table 5 (row 9) shows that loaning alone
reduces average queuing time and JCT by 1.39x and 1.31x
over Baseline. Loaning also improves the combined cluster
usage from 52% to 66%. The JCT improvement mainly comes
from the reduction in queuing time as jobs now can run
on the loaned resources instead of waiting in the queue.
Table 7 shows the statistics of queuing time and JCT for
jobs running on the on-loan servers. The median and 95%ile
queuing time is improved by 4.68x and 3.22x, respectively,
compared to Baseline. The resource usage rate of on-loan
servers throughout the experiment is consistently above 92%
as depicted in Figure 9, which proves the effectiveness of
resource loaning.

We observe that JCT improvement of capacity loaning is
not as significant as elastic scaling (Table 5 row 13). This is
because (1) loaning depends on idle inference resources and
its gain is less stable, and (2) compared to scaling, loaning
itself does not affect job running time.
Opportunistic scheduling. We then discuss why capacity
loaning is more efficient than simple opportunistic schedul-
ing. Table 5 row 6 shows the performance when the fungible
jobs are scheduled opportunistically in the inference cluster.
This does improve average queuing time and JCT over Base-
line, but suffers 26.0% and 14.5% loss compared to Lyra (row
9). This is mainly because when fungible jobs are blindly put
to inference servers, they suffer lower resource efficiency.
Reclaiming heuristic.We compare our reclaiming heuris-
tic to Random and SCF.We use twometrics, the percentage of
preempted jobs among running jobs, and collateral damage
as the fraction of GPUs vacated in excess of the reclaiming
demand. It is clear from Figure 10 Lyra outperforms others

415

EuroSys ’23, May 8–12, 2023, Rome, Italy Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong Guo, and Cong Wang

with and without elastic scaling. Without scaling, Lyra’s
knapsack-based heuristic reduces preemption and collateral
damage by 1.51x, 1.68x and 1.36x, 1.59x over SCF and Ran-
dom, respectively. With scaling, Lyra scales elastic jobs on
the flexible server group first which further widens the gap.
From Table 5, it is clear that reducing preemptions is ben-
eficial: Lyra reduces the average queuing time and JCT by
1.26x, 1.15x and 1.31x, 1.13x over SCF and Random.

We also run an exhaustive search to find the optimal re-
claiming solution. Lyra results in the same number of pre-
emptions as optimal when reclaiming fewer than 60 servers,
and incurs 19% more preemptions otherwise. We compare
the servers reclaimed by Lyra with the optimal solution. An
average 84% of servers in the optimal solution are picked by
Lyra’s reclaiming decision. The average running time of the
optimal solution, however, is 420k times that of Lyra.
Use of checkpointing. Checkpointing can effectively help
a preempted job recover the training progress and resume
from where they are interrupted. Since the scheduler cannot
determine if a job has proper checkpointing or not, in our
default setup we have made a conservative assumption that
no jobs have checkpointing. Here we gradually increase
the fraction of jobs with checkpointing enabled and present
its impact on performance against the default case without
checkpointing (Table 5 row 9). Figure 13 shows that prevalent
checkpointing consistently improves Lyra: for example the
preemption ratio is reduced to 0.26% and average JCT is
reduced by 1.24x when 80% jobs have checkpoints.

7.4 Deep-Dive: Job Scheduling
We evaluate job scheduling in more detail here. The results
are obtained without capacity loaning in Basic scenario.
Sources of gain. Table 8 shows the queuing time and JCT
distributions of all schemes. Our key insight in solving the
scheduling problem is to prioritize the inelastic workload
(§5.2). Gandiva does not improve Baseline much due to its
opportunistic nature: it only scales jobs in low-utilization
periods. Both Lyra and AFS allocate the minimum demand
to each job initially. From Table 8, they have similar me-
dian queuing time. Though Pollux considers job’s minimum
demand and favors those with large goodput, it does not
explicitly launch as many jobs as possible, thus incurring
longer queuing time. Lyra outperforms Pollux by 1.23x and
1.69x in median and 95%ile queuing time.

Turning to JCT, we find from Table 8 that Pollux tends to
prolong the large-and-long jobs by shrinking their resources
towards the end of training to yield for newly-started jobs
that make rapid progress with the same resources. More-
over, Pollux’s performance heavily hinges upon the problem
scale and the number of iterations allowed for its genetic
algorithm. In a large cluster of over 3,500 GPUs with heavy
workload, the preset 100 iterations are not sufficient to get
an efficient allocation result. To keep the scheduling over-
head acceptable, we set the number of iterations to 250 and

Scheme %ile Queuing Time (s) %ile JCT (s)
50 75 95 99 50 75 95 99

Baseline 55 1892 8357 14323 791 29163 82933 376513
Gandiva 49 1764 6632 11806 755 27244 80567 323626
AFS 58 1297 5883 11124 721 12304 72123 323513
Pollux 47 772 3488 9031 686 20143 60883 247435
Lyra 47 697 3475 8731 602 12072 57597 223815
Lyra+TunedJobs 43 566 2749 7112 564 9293 52458 194391
Table 8. 50%ile, 75%ile, 95%ile and 99%ile of queuing time and JCT (Basic).

% Wrong Prediction Queuing Time Reduction JCT Reduction
20% 2.21 1.52
40% 2.17 1.49
60% 1.76 1.38

Table 9. Queuing time and JCT reduction with incorrect running time
estimation. The fraction of incorrect estimation varies from 0% to 60%. We
assume each incorrect prediction has a random error margin within 25%.

Lyra still has 1.20x and 1.25x improvements in median and
95%ile JCT. AFS assumes unbounded elasticity and shows
a higher resource usage. However, unlimited elasticity and
greedy allocation implicitly favor jobs with better through-
put at the cost of others. Its average JCT is 1.2x that of Lyra
which balances the resources each job gets by making global
allocation and considering limited elasticity.
Sensitivity analysis: Proportion of elastic jobs.We wish
to analyze whether Lyra is sensitive to the proportion of
elastic jobs in the mix. Figure 14 shows the performance
comparison when elastic jobs grow from 20% to 100% of the
population. All schemes show improvements as a result. Lyra
delivers the largest gains in both queuing time and JCT com-
pared to other schemes withmore elastic jobs, demonstrating
that its scheduler most efficiently exploits job elasticity. AFS
also has good gains in queuing time as it initially allocates
minimum demand to each job. Its JCT gains, however, are
much lower due to the greedy heuristic in ordering the jobs
for allocation. Pollux’s queuing time performance is poor
as queuing time is not considered in its design. Its JCTs are
much better because it auto-tunes the hyperparameters for
the best performance.
Sensitivity analysis: Error in running time estimation.
Our second sensitivity analysis concerns the running time
prediction which Lyra’s scheduler relies on. Table 9 shows
the performance under different estimation accuracy. Lyra
improves queuing delay by 1.76x over Baseline even when
there are 60% wrong predictions (each with at most 25%
error). Its gain is consistent with less than 60% wrong pre-
dictions, which demonstrates its robustness.
Sensitivity analysis: Imperfect scaling of elastic jobs.
In Figure 16, we plot Lyra’s performance with non-linear
scalability of training throughput, following the same setup
discussed in §7.2. The average JCT improves by 1.86x when
all the elastic jobs scale non-linearly. When the fraction of
elastic jobs is less than 50%, non-linear scalability has less
than 5% impact on JCT compared to linear scalability. Yet its
impact on JCT grows (up to 9%) as elastic jobs become the

416

Lyra: Elastic Scheduling for Deep Learning Clusters EuroSys ’23, May 8–12, 2023, Rome, Italy

Figure 14. Queuing time reduction of Baseline as
elastic jobs increase.

Figure 15. JCT reduction of Baseline as elastic
jobs increase.

Figure 16. Lyra with non-linear scaling. Dots indicate
the results with linear scaling.

Figure 17. Preemption Ratio and average collateral damage comparison in
testbed.

primaryworkload, because they run slower due to non-linear
scalability. Meanwhile, the newly-arrived jobs have to wait
longer for running jobs to vacate the resources, resulting in
up to 7% increase in average queuing time.
Hyperparameter tuning. We study Lyra+TunedJobs now
which adapts Pollux’s job agent to tune jobs’ hyperparame-
ters as explained in §7.1. In the Basic scenario, Lyra+TunedJobs
(row 14 in Table 5) enjoys additional 18% and 13% gains over
Baseline in 95%ile and 99%ile JCT. This gain is more signifi-
cant when all the jobs are elastic as seen in Figures 14–15.

More importantly, Lyra+TunedJobs allows for a fair com-
parison with Pollux as both have hyperparameter tuning. It
outperforms Pollux by 1.32x and 1.37x in median and 95%ile
JCT in Basic scenario (Table 8). Lyra’s gain over Pollux is
larger here which shows that Lyra’s scheduling policy per-
forms better in JCT. The main reason is that Lyra specifically
optimizes JCT while Pollux optimizes goodput for resource
efficiency. Thus JCT for some jobs is affected, especially near
the end of training when the marginal gain of resources
becomes smaller (i.e., goodput is lower) and resource allo-
cation is decreased. Another side-effect of goodput-based
scheduling is back-and-forth scaling as goodput varies as
soon as the hyperparameter or allocation changes. We find
the number of scaling operations in Pollux is 1.76x that of
Lyra+TunedJobs in the Ideal scenario, and many are scaling-
out followed immediately by scaling-in in the next interval.

7.5 Testbed Results
We use our prototype in testbed experiments to schedule
jobs and YARN to run, scale, and preempt them.
Workload.We use a scaled-down version of the traces with
180 training jobs (10 elastic ones, similar to Basic scenario);
jobs with (maximum) demand larger than 16 GPUs (50%
cluster) are excluded. Job submission lasts for 8 hours and
training time varies from 2 minutes to 2 hours. The inference
trace is also scaled down according to the testbed capacity.

Scenario Scheme Queuing Time (s) JCT (s) Preemption
Mean Median 95%ile Mean Median 95%ile Ratio

Overall Baseline 1532 772 1003 4078 2183 3096 0
Lyra 1109 503 738 3335 1747 2731 18%

Capacity
Loaning

Random 1527 658 993 3893 2046 3015 34%
SCF 1473 614 864 3857 1994 3001 30%
Lyra 1230 594 823 3748 1946 2864 22%

Elastic
Scaling

Gandiva 1443 645 1002 3882 2015 2893 NA
AFS 1338 534 882 3521 1836 2803 NA
Pollux 1405 576 937 3552 1934 3004 NA
Lyra 1318 546 798 3413 1791 2794 NA

Table 10. Testbed results using different schemes in Basic scenario.

JCT and queuing time. Table 10 shows the statistics of
queuing time and JCT. Lyra improves average and 95%ile
queuing time by 1.38x and 1.36x over Baseline . In terms of
JCT, Lyra improves the median and 95%ile by 19.9% and 11.7%
over Baseline. The gains come from both capacity loaning
and elastic scaling: the orchestrator performed 6 loaning
and 8 reclaiming operations involving a total of 10 servers,
and the scheduler issued 73 scaling operations. In capacity
loaning, Lyra outperforms Random and SCF by 19% and
15% in average queuing time. In elastic scaling, Lyra’s tail
queuing time is 10% shorter than AFS. Its JCT gain is 1.19x
over Baseline compared to 1.14x and 1.15x for AFS and Pollux.
The results here show that Lyra is highly effective in reducing
queuing time. The JCT improvements are relatively small
due to the inference cluster’s limited resources compared
to job demand. We observe the inference cluster loaned at
most three servers which is equivalent to one training server
in computational capability, while it is common for a job to
demand an entire training server in our trace.
Preemption. Figure 17 shows the total number of preemp-
tions and the corresponding collateral damage in testbed.
Lyra reduces preemption significantly by over 1.3x com-
pared to Random and SCF reclaiming schemes (row group
2). We also measure the preemption overhead, including the
time to save a checkpoint to the disk, terminate containers,
launch new containers on different servers, and load the
checkpoint before training starts. The average overhead is
63 seconds, which is adopted in our large-scale simulation.

8 Discussion
Fine-grained resource sharing. Lyra uses physical ma-
chines as the basic unit of loaning and reclaiming. Our inten-
tion is to avoid interference between training and inference.

417

EuroSys ’23, May 8–12, 2023, Rome, Italy Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong Guo, and Cong Wang

This concern can be alleviated by improvements from the
infrastructure (e.g. better isolation mechanisms). Then one
may consider fine-grained sharing on the GPU level, which
allows more sharing opportunities but also demands a more
careful scheduling design because of the larger problem scale.
Performance under scaling.We assume the elastic job’s
training throughput is linear in the allocated resourceswithin
the scaling range. In practice training throughput is likely to
scale sub-linearly due to factors such as network communica-
tion and synchronization overhead. An improved approach
may be to empirically profile the throughput and running
time of the workloads as a non-linear function of resources.
Lyra’s scheduling algorithm still works with non-linear scal-
ing which does not change the combinatorial nature of the
problem; we provided simulation results in §7.2.
Heterogeneous GPU training. Training with heteroge-
neous GPUs is an active area of research and current mecha-
nisms are primitive [4]. We observe that though adjusting
the batch size can roughly synchronize the workers, it may
prolong the training convergence in some cases. More effort
is needed to improve training efficiency with heterogeneous
GPUs and to automate hyperparameter adjustment [3, 34].

9 Related Work
GPU cluster schedulers.We have discussed Pollux, AFS,
andGandiva extensively in §2.3 and §7.2. Tiresias [13] applies
least-attained-service to minimize average JCT. It does not
consider elastic scaling. Optimus [40] predicts the training
time by modeling the loss convergence speed and designs
a heuristic to minimize average JCT. Predicting a DNN’s
convergence, however, is challenging as discussed in [15].
PAI [53] introduces a scheduler which reserves high-end
GPUs for high-GPU tasks and packs low-GPU tasks on less
advanced GPUs. These works all schedule jobs in a cluster
with a fixed capacity.
Systems support for elastic scaling. There is emerging in-
terest in exploiting resource elasticity in distributed training.
Systems such as [16, 22, 42] extend various ML frameworks
to support elasticity. [36] proposes an auto-scaling policy by
considering both cost and scaling efficiency. AntMan [56]
provides a scaling mechanism to micromanage computation
and GPU memory during training, and a job scheduler for
performance guarantees. They are complementary to Lyra
as they provide practical solutions for scaling DNN jobs.
Dynamic resource allocation. Graphene [12] and Priori-
tyMeister [62] dynamically adjust resource allocation to fit
job’s time-varying demand and utilize resources more effi-
ciently. In Lyra, we consider scaling for jobs that can work
with a range of resources, which are taken as constraints to
the scheduling problem. Lyra schedules jobs with an extra
dimension of how much resource should a job get and its
impact on cluster performance.

10 Conclusion
We have presented Lyra, an elastic GPU cluster scheduler
for deep learning. The key idea is to exploit cluster-level
elasticity by loaning idle inferences servers for training, and
job-level elasticity by scaling jobs to better utilize the dy-
namic resource pool. In designing and evaluating Lyra, we
have addressed new challenges in cluster management, by
introducing heuristics to reduce job preemption cost due to
loan-reclaiming, and to minimize job completion time when
elastic jobs are presented.We plan to investigate information-
agnostic scheduling without knowing jobs’ running time a
priori in future work.

Acknowledgments
We thank the anonymous EuroSys’23 reviewers and our
shepherd Tim Harris for their constructive and valuable
comments. We also thank the anonymous reviewers from
ATC’22, NSDI’22, SOSP’21, and OSDI’21 for their feedback
that helped shape the paper. This work was supported in
part by funding from the Research Grants Council of Hong
Kong (N_CityU139/21, C2004-21GF, R1012-21, R6021-20F,
and 11209520), and from CUHK (4937007, 4937008, 5501329,
5501517 and 8601677).

References
[1] Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh, and

Dhabaleswar K Panda. 2016. Efficient large message broadcast using
NCCL and CUDA-aware MPI for deep learning. In Proceedings of the
23rd European MPI Users’ Group Meeting.

[2] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. 2020. PipeSwitch:
Fast Pipelined Context Switching for Deep Learning Applications. In
Proc. USENIX OSDI.

[3] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, and Srinidhi Viswanatha. 2020. Balancing efficiency
and fairness in heterogeneous GPU clusters for deep learning. In
Proc. ACM EuroSys.

[4] Chen Chen, Qizhen Weng, Wei Wang, Baochun Li, and Bo Li. 2020.
Semi-dynamic load balancing: efficient distributed learning in non-
dedicated environments. In Proc. ACM SoCC.

[5] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalya-
naraman. 2014. Project adam: Building an efficient and scalable deep
learning training system. In Proc. USENIX OSDI.

[6] Edward G. Coffman Jr., János Csirik, Gábor Galambos, SilvanoMartello,
and Daniele Vigo. 2013. Bin Packing Approximation Algorithms:
Survey and Classification. InHandbook of Combinatorial Optimization.

[7] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. 2017. Clipper: A low-latency online
prediction serving system. In Proc. USENIX NSDI.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv:1810.04805

[9] Samuel Eilon and IG Chowdhury. 1977. Minimising waiting time
variance in the single machine problem.

[10] Dror G Feitelson and Larry Rudolph. 1998. Metrics and benchmarking
for parallel job scheduling. InWorkshop on Job Scheduling Strategies
for Parallel Processing.

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming

418

https://arxiv.org/abs/1810.04805

Lyra: Elastic Scheduling for Deep Learning Clusters EuroSys ’23, May 8–12, 2023, Rome, Italy

He. 2017. Accurate, large minibatch sgd: Training imagenet in 1 hour.
arXiv:1706.02677

[12] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and
Janardhan Kulkarni. 2016. GRAPHENE: Packing and dependency-
aware scheduling for data-parallel clusters. In Proc. USENIX NSDI.

[13] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeong-
jae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019.
Tiresias: A GPU Cluster Manager for Distributed Deep Learning. In
Proc. USENIX NSDI.

[14] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving DNNs
like Clockwork: Performance Predictability from the Bottom Up. In
Proc. USENIX OSDI.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proc. IEEE/CVF CVPR.

[16] Horovod. 2021. Elastic Horovod. https://horovod.readthedocs.io/en/
latest/elastic_include.html.

[17] Hanpeng Hu, Chenyu Jiang, Yuchen Zhong, Yanghua Peng, ChuanWu,
Yibo Zhu, Haibin Lin, and Chuanxiong Guo. 2022. dPRO: A Generic
Performance Diagnosis and Optimization Toolkit for Expediting Dis-
tributed DNN Training. In Proc. MLSys.

[18] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo Shin, and
KyoungSoo Park. 2021. Elastic Resource Sharing for Distributed Deep
Learning. In Proc. USENIX NSDI.

[19] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong,
Feihu Zhou, Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu,
et al. 2018. Highly scalable deep learning training system with mixed-
precision: Training imagenet in four minutes. arXiv:1807.11205

[20] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-
iong Guo. 2020. A Unified Architecture for Accelerating Distributed
DNN Training in Heterogeneous GPU/CPU Clusters. In Proc. USENIX
OSDI.

[21] Tyler B Johnson, Pulkit Agrawal, Haijie Gu, and Carlos Guestrin. 2019.
AdaScale SGD: A Scale-Invariant Algorithm for Distributed Training.

[22] Kubernetes. 2021. ElasticDL: A Kubernetes-native Deep Learning
Framework. https://github.com/sql-machine-learning/elasticdl.

[23] Kubernetes. 2021. Kubernetes. https://kubernetes.io/.
[24] Kubernetes. 2021. Kubernetes Horizontal Pod Autoscaler.

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-
autoscale/.

[25] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep Learn-
ing.

[26] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. 2014. Scaling distributed machine learning with the parameter
server. In Proc. USENIX OSDI.

[27] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska. 2011. Dy-
namic right-sizing for power-proportional data centers. In Proc. IEEE
INFOCOM.

[28] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. 2015. Heracles: Improving resource
efficiency at scale. In Proc. ACM ISCA.

[29] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius
Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis,
Victor Bittorf, et al. 2019. Mlperf training benchmark. arXiv:1910.01500

[30] Hiroaki Mikami, Hisahiro Suganuma, Yoshiki Tanaka, Yuichi
Kageyama, et al. 2018. Massively distributed SGD: ImageNet/ResNet-
50 training in a flash. arXiv:1811.05233

[31] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram.
2021. CheckFreq: Frequent, Fine-Grained DNN Checkpointing. In
Proc. USENIX FAST.

[32] Davoud Mougouei, David MW Powers, and Asghar Moeini. 2017. An
integer linear programming model for binary knapsack problem with
dependent item values. In Australasian Joint Conference on Artificial
Intelligence.

[33] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei
Zaharia. 2019. PipeDream: Generalized Pipeline Parallelism for DNN
Training. In Proc. ACM SOSP.

[34] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar
Phanishayee, and Matei Zaharia. 2020. Heterogeneity-Aware Cluster
Scheduling Policies for Deep Learning Workloads. In Proc. USENIX
OSDI.

[35] Deepak Narayanan, Keshav Santhanam, Amar Phanishayee, and Matei
Zaharia. 2018. Accelerating deep learning workloads through efficient
multi-model execution. In NeurIPS Workshop on Systems for Machine
Learning.

[36] Andrew Or, Haoyu Zhang, and Michael Freedman. 2020. Resource
elasticity in distributed deep learning. In Proc. MLSys.

[37] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. 2011.
Heuristics for vector bin packing. Microsoft Research Technical Report.
Microsoft Research.

[38] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind
Kalaiah, Daya Khudia, James Law, Parth Malani, Andrey Malevich,
Satish Nadathur, et al. 2018. Deep learning inference in facebook data
centers: Characterization, performance optimizations and hardware
implications. arXiv:1811.09886

[39] Jay H Park, Gyeongchan Yun, M Yi Chang, Nguyen T Nguyen, Seung-
min Lee, Jaesik Choi, Sam H Noh, and Young-ri Choi. 2020. HetPipe:
Enabling Large DNN Training on (Whimpy) Heterogeneous GPU
Clusters through Integration of Pipelined Model Parallelism and Data
Parallelism. In Proc. USENIX ATC.

[40] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong
Guo. 2018. Optimus: an efficient dynamic resource scheduler for deep
learning clusters. In Proc. ACM EuroSys.

[41] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang
Lan, ChuanWu, and Chuanxiong Guo. 2019. A generic communication
scheduler for distributed DNN training acceleration. In Proc. ACM
SOSP.

[42] PyTorch. 2021. PyTorch Elastic. https://pytorch.org/elastic/0.2.0rc1/
distributed.html#module-torchelastic.distributed.launch.

[43] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie
Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P.
Xing. 2021. Pollux: Co-adaptive Cluster Scheduling for Goodput-
Optimized Deep Learning. In Proc. USENIX OSDI.

[44] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.
Nexus: A GPU Cluster Engine for Accelerating DNN-Based Video
Analysis. In Proc. ACM SOSP.

[45] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGres-
ley, Jared Casper, and Bryan Catanzaro. 2019. Megatron-lm: Train-
ing multi-billion parameter language models using model parallelism.
arXiv:1909.08053

[46] Dharma Shukla, Muthian Sivathanu, Srinidhi Viswanatha, Bhargav
Gulavani, Rimma Nehme, Amey Agrawal, Chen Chen, Nipun Kwa-
tra, Ramachandran Ramjee, Pankaj Sharma, et al. 2022. Singular-
ity: Planet-Scale, Preemptible, Elastic Scheduling of AI Workloads.
arXiv:1403.1349

[47] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolu-
tional networks for large-scale image recognition. arXiv:1409.1556

[48] Prabhakant Sinha and Andris A Zoltners. 1979. The multiple-choice
knapsack problem. Technical Report. Operations.

[49] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor,
Scott Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew
Clark, Kabir Gogia, Long Cheng, Ben Christensen, Alex Gartrell,
Maxim Khutornenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas
Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaishnavi Venkatesan,
and Peter Zhang. 2020. Twine: A Unified Cluster Management System
for Shared Infrastructure. In Proc. USENIX OSDI.

419

https://arxiv.org/abs/1706.02677
https://horovod.readthedocs.io/en/latest/elastic_include.html
https://horovod.readthedocs.io/en/latest/elastic_include.html
https://arxiv.org/abs/1807.11205
https://github.com/sql-machine-learning/elasticdl
https://kubernetes.io/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://arxiv.org/abs/1910.01500
https://arxiv.org/abs/1811.05233
https://arxiv.org/abs/1811.09886
https://pytorch.org/elastic/0.2.0rc1/distributed.html#module-torchelastic.distributed.launch
https://pytorch.org/elastic/0.2.0rc1/distributed.html#module-torchelastic.distributed.launch
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1403.1349
https://arxiv.org/abs/1409.1556

EuroSys ’23, May 8–12, 2023, Rome, Italy Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong Guo, and Cong Wang

[50] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch,
Mor Harchol-Balter, and Gregory R Ganger. 2016. TetriSched: global
rescheduling with adaptive plan-ahead in dynamic heterogeneous
clusters. In Proc. ACM EuroSys.

[51] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, et al. 2013. Apache hadoop yarn: Yet
another resource negotiator. In Proc. ACM SoCC.

[52] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster manage-
ment at Google with Borg. In Proc. ACM EuroSys.

[53] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,
Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS in
the Wild: Workload Analysis and Scheduling in Large-Scale Heteroge-
neous GPU Clusters. In Proc. USENIX NSDI.

[54] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. 2016. Google’s neural machine translation
system: Bridging the gap between human and machine translation.
arXiv:1609.08144

[55] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, et al. 2018. Gandiva: Introspective cluster
scheduling for deep learning. In Proc. USENIX OSDI.

[56] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi
Li, Yihui Feng, Wei Lin, and Yangqing Jia. 2020. AntMan: Dynamic
Scaling on GPU Clusters for Deep Learning. In Proc. USENIX OSDI.

[57] Feng Yan, Olatunji Ruwase, Yuxiong He, and Trishul Chilimbi. 2015.
Performance modeling and scalability optimization of distributed deep
learning systems. In Proc. ACM SIGKDD.

[58] Xiaodong Yi, Shiwei Zhang, Ziyue Luo, Guoping Long, Lansong Diao,
Chuan Wu, Zhen Zheng, Jun Yang, and Wei Lin. 2020. Optimizing
distributed training deployment in heterogeneous GPU clusters. In
Proc. CoNEXT.

[59] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Sri-
nadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and
Cho-Jui Hsieh. 2019. Large batch optimization for deep learning:
Training bert in 76 minutes. arXiv:1904.00962

[60] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie Xu.
2014. Fuxi: A Fault-Tolerant Resource Management and Job Scheduling
System at Internet Scale. In Proc. VLDB Endow.

[61] Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. 2020.
Daydream: Accurately Estimating the Efficacy of Optimizations for
DNN Training. In Proc. USENIX ATC.

[62] Timothy Zhu, Alexey Tumanov, Michael A Kozuch, Mor Harchol-
Balter, and Gregory R Ganger. 2014. Prioritymeister: Tail latency qos
for shared networked storage. In Proc. ACM SoCC.

420

https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1904.00962

	Abstract
	1 Introduction
	2 Motivation
	2.1 Why Capacity Loaning?
	2.2 Elastic Scaling for the Full Potential
	2.3 Existing Cluster Schedulers

	3 Design Overview
	4 Capacity Loaning and Reclaiming
	5 Job Scheduling
	5.1 Challenge of Elasticity
	5.2 Two-Phase Resource Allocation
	5.3 Worker Placement

	6 Implementation
	7 Evaluation
	7.1 Setup
	7.2 Overall Performance in Simulation
	7.3 Deep-Dive: Capacity Loaning
	7.4 Deep-Dive: Job Scheduling
	7.5 Testbed Results

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

