

Copyright Warning

Use of this thesis/dissertation/project is for the purpose of
private study or scholarly research only. Users must comply
with the Copyright Ordinance.

Anyone who consults this thesis/dissertation/project is
understood to recognise that its copyright rests with its
author and that no part of it may be reproduced without the
author’s prior written consent.

CITY UNIVERSITY OF HONG KONG
香港城市大學

Efficient Scheduling of Distributed Deep
Neural Network Workloads

分佈式深度神經網絡任務的高效調度

Submitted to
Department of Computer Science

電腦科學學系

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

哲學博士學位

by

LI Jiamin
李嘉敏

February 2024
二零二四年二月

i

Abstract

Deep Neural Networks (DNNs) have become the cornerstone for a myriad of AI

applications. However, the growing complexity and size of DNN models, along

with the increasing scale of datasets, have precipitated a surge in computational

resource requirements, elevating the costs of training and inference. To tackle

these issues, DNNs are increasingly deployed across extensive GPU clusters. Yet,

the design of systems to host distributed DNN workloads encounters significant

challenges across the infrastructure, framework, and algorithmic layers.

This Ph.D. thesis contributes the realm of distributed DNN systems by ad-

dressing challenges on multiple fronts in a bottom-up approach. At the infras-

tructure layer, we design Lyra, that addresses the problem of separate training

and inference clusters by introducing capacity loaning and elastic scaling. This

novel cluster scheduler significantly reduces queuing times and completion times

of DNN training jobs, improving cluster resource utilization. Moving to the

model framework layer, Lina addresses the challenges of distributed training

and inference of sparsely activated models, specifically Mixture-of-Experts (MoE)

language models, by identifying and alleviating communication bottlenecks.

This results in substantial reductions in training step time and inference latency.

Lastly, the thesis introduces Adaptive Gating in MoE, a flexible training strategy

that reduces the computation costs of each token based on its linguistic com-

plexity. This algorithmic approach achieves less training FLOPS and time while

maintaining the same inference quality.

ii

The collective advancements presented in this thesis signify a small but mean-

ingful advancement in the scalability and efficiency of systems underpinning

distributed DNN workloads.

iii

City University of Hong Kong

Qualifying Panel and Examination Panel

Surname: LI

First Name: Jiamin

Degree: Doctor of Philosophy

Department: Department of Computer Science

The Qualifying Panel of the above student is composed of:v

Supervisor

Prof. WANG Cong Department of Computer Science

City University of Hong Kong

External Co-supervisor

Prof. XU Hong Department of Computer Science and Engineering

The Chinese University of Hong Kong

Qualifying Panel Members

Prof. WANG Jianping Department of Computer Science

City University of Hong Kong

Prof. LI Minming Department of Computer Science

City University of Hong Kong

Prof. XUE Chun, Jason Department of Computer Science

City University of Hong Kong

This thesis has been examined and approved by the following examiners:

Prof. WANG Cong Department of Computer Science

City University of Hong Kong

Prof. LI Zhenjiang Department of Computer Science

City University of Hong Kong

Prof. WANG Shiqi Department of Computer Science

City University of Hong Kong

Prof. WU Chuan Department of Computer Science

The University of Hong Kong

iv

Contents

Abstract ii

Qualifying Panel and Examination Panel iv

List of Tables viii

List of Figures x

Acknowledgments xiii

1 Introduction 1
1.1 Distributed Deep Neural Networks 1
1.2 Summary of Contributions . 2
1.3 Thesis Organization . 5

2 Background & Literature Review 6
2.1 Distributed DNN Training and Inference 6

2.1.1 Parallelism Strategies . 7
2.2 Bottlenecks in Distributed DNN . 8

2.2.1 Communication Overhead 9
2.2.2 Memory Consumption . 10

2.3 GPU Cluster Scheduling . 11
2.4 Adaptive and Sparse Computation 13

2.4.1 Algorithms . 13
2.4.2 Systems . 14

3 Lyra: Elastic Scheduling for Deep Learning Clusters 15
3.1 Introduction . 15
3.2 Motivation . 19

3.2.1 Why Capacity Loaning? . 19
3.2.2 Elastic Scaling for the Full Potential 22
3.2.3 Existing Cluster Schedulers 24

v

3.3 Design Overview . 25
3.4 Capacity Loaning and Reclaiming 26
3.5 Job Scheduling . 29

3.5.1 Challenge of Elasticity . 30
3.5.2 Two-Phase Resource Allocation 32
3.5.3 Worker Placement . 34

3.6 Implementation . 35
3.7 Evaluation . 36

3.7.1 Setup . 37
3.7.2 Overall Performance in Simulation 41
3.7.3 Deep-Dive: Capacity Loaning 45
3.7.4 Deep-Dive: Job Scheduling 49
3.7.5 Testbed Results . 53

3.8 Discussion . 54
3.9 Related Work . 56

4 Lina: Accelerating Distributed MoE Training and Inference 57
4.1 Introduction . 57
4.2 Background and Motivation . 61

4.2.1 A Primer on MoE . 61
4.2.2 Bottleneck Analysis . 63

4.3 Design Overview . 67
4.4 Prioritizing All-to-All Training . 67

4.4.1 Design Challenge . 68
4.4.2 Tensor Partitioning and Micro-Ops 70

4.5 Scheduling Resources in Inference 72
4.5.1 Design Challenge . 73
4.5.2 Popularity based Scheduling 74

4.6 Implementation . 77
4.6.1 Training . 77
4.6.2 Inference . 78

4.7 Evaluation . 79
4.7.1 Setup . 79
4.7.2 Training . 81

4.7.2.1 Overall Performance 81
4.7.2.2 Communication Scheduler 83

4.7.3 Inference . 86
4.7.3.1 Resource Scheduler 86
4.7.3.2 Popularity Estimation 89

vi

4.8 Discussion . 91
4.9 Related Work . 92

5 Adaptive Gating in MoE-based Language Models 94
5.1 Introduction . 94
5.2 Background . 97

5.2.1 Mixture-of-Experts . 97
5.3 Design . 98

5.3.1 Adaptive Gating in MoE . 98
5.3.2 Batching . 100

5.4 Evaluation . 102
5.4.1 Tasks and Models . 102
5.4.2 Baselines . 102
5.4.3 Training Configurations . 103
5.4.4 Overall Performance . 104
5.4.5 Analysis and Insights . 107
5.4.6 Ablation Study . 111

5.5 Limitation . 112

Conclusion 114
5.6 Conclusion . 114
5.7 Future Work . 115

References 117

List of Publications 139

vii

List of Tables

3.1 Different definitions of server preemption cost for the reclaiming
example in Figure 3.5. 28

3.2 Two elastic jobs and their demand information. Jobs complete in
min. running time when allocated with wmax workers. 30

3.3 Possible resource allocation results for the two jobs when they
share a cluster that can host 8 workers. Only the initial allocation
is shown; once the first job finishes, the other is immediately
allocated more resources as much as possible. Three solutions
lead to very different JCTs. 31

3.4 A counter example with two elastic jobs, where prioritizing A with
longer running time is actually better for JCT. 31

3.5 Simulation results in different scenarios using different schemes. . 42
3.6 Performance without special placement of elastic jobs. Lyra naively

places jobs based on the BFD heuristic. 44
3.7 Queuing time and JCT of jobs running on on-loan servers. 46
3.8 50%ile, 75%ile, 95%ile and 99%ile of queuing time and JCT (Basic). 49
3.9 Queuing time and JCT reduction with incorrect running time

estimation. The fraction of incorrect estimation varies from 0%
to 60%. We assume each incorrect prediction has a random error
margin within 25%. 51

3.10 Testbed results using different schemes in Basic scenario. 54

4.1 The completion time of all-to-all and its ratio in training and infer-
ence task of Transformer-XL [29] in different number of experts
per layer. Training and inference have the same batch size here.
Each FFN layer is replaced with MoE and the number of experts is
equal to the number of GPUs similar to the common practice [37].
A100 GPUs with 40GB memory and 100Gb/s InfiniBand are used.
We use the MoE implementation in DeepSpeed. 63

4.2 Top-4 popular experts in sampled MoE layer of two MoE models. 74

viii

4.3 GPU utilization and peak memory usage of 16-expert MoE models.
GPU Memory Peak Usage is the ratio between the maximum usage
and the total device memory. DRAM-offloading indicates if it is
applied. 83

4.4 Pipelining efficiency comparison with and without expert packing. 83
4.5 Lina’s performance using different path lengths during estima-

tion. Both models have 16 experts per layer. Inference time is
normalized to Ideal. 91

4.6 Lina’s performance on different tasks and datasets. Inference time
is normalized to Ideal. The path length is set to 3. 91

5.1 We compare the computation savings and running time reduc-
tion of the MoE layer of varying degrees of top-1 gating against
top-2 gating. The MoE layer running time is measured on our
testbed Section 5.4.3. Tokens are randomly selected from the data
batch. Here we also use the Sentiment analysis task list in Table 5.2.
We show the results averaged from 40 runs. 101

5.2 Overall performance of adaptive MoE and compared baselines in
different NLP tasks. All the models converge to the same loss value.102

5.3 Overall performance of adaptive gating and compared baselines in
different NLP tasks. We normalize the training time with reference
to the performance of top-2 gating MoE. All the schemes in the
same task converge to the same loss. 105

5.4 Examples of tokens using top-2 experts in different tasks. Under-
lined tokens use top-2 gating in a sequence. 111

5.5 Overall performance when the threshold T changes. Training time
is normalized with reference to top-2 gating MoE. We highlight
the best one with the least training time. 112

5.6 Overall performance comparison of adaptive gating when data
batch is not adjusted. 113

ix

List of Figures

3.1 Inference cluster GPU utilization, i.e. fraction of GPUs serving at
least one request in our inference cluster. The measurement spans
one week from Oct 1 to Oct 7, 2020. The cluster has about 4,000
GPUs. The utilization changes from 42% in bottom hours to 95%
in peak hours. 20

3.2 The fraction of queuing jobs among all the newly-submitted jobs
in each hour in our training cluster for one week. A job suffers
queuing time when the scheduler fails to satisfy its resource de-
mand on the first try. If the ratio is high, it means that most of the
jobs submitted in that hour are queued. The cluster has ∼3,500
GPUs, and the average utilization is 82%. 21

3.3 Throughput of four elastic training jobs using Tesla V100 GPUs.
The workers are doubled every five epochs, starting from 1 worker.
In our testbed, each server hosts 8 GPUs connected by NVLink.
Servers use 100G InfiniBand interconnects. Each worker container
uses 2 GPUs. 23

3.4 Lyra system architecture. Solid lines indicate control flow and
dashed ones data flow. Red lines represent capacity loaning work-
flow, while blue ones elastic scaling workflow. Each square repre-
sents a GPU server; the gray ones are in use. 25

3.5 A reclaiming example. Each server has 8 GPUs. GPUs in-use are
indicated by the job ID inside each square. 28

3.6 Item weights and JCT reduction values for jobs in Table 3.4. Here,
we assume job A needs 2 GPU per worker and job B 1 GPU per
worker. 33

3.7 Overall resource usage rate of Baseline and Lyra in Basic and Ideal
scenario. 43

3.8 Average queuing time and JCT against Baseline in imperfect scala-
bility. 43

3.9 Average queuing time and JCT against Baseline in Heterogeneous. 45

x

3.10 Average queuing time and JCT against the respective Baseline in
Basic and Ideal for ten 10-day traces. 46

3.11 The daily average resource usage of on-loan servers (monitored
every 5 minutes). 47

3.12 Preemption ratio and average collateral damage (defined in Sec-
tion 3.7.3, Reclaiming heuristic). 48

3.13 Average queuing time and JCT when jobs with checkpointing
increase in Ideal. 49

3.14 Queuing time reduction of Baseline as elastic jobs increase. 51
3.15 JCT reduction of Baseline as elastic jobs increase. 51
3.16 Lyra with non-linear scaling. Dots indicate the results with linear

scaling. 52
3.17 Preemption Ratio and average collateral damage comparison in

testbed. 54

4.1 MoE layer in Transformer-based models. 62
4.2 Timeline of forward pass an MoE layer. We simplify the presen-

tation by bundling GPU kernels here: The computation kernels
are grouped by their roles in the MoE layer into Gate, FFN and
Combine. The Combine operation involves reshaping the tensors
and computing the weighted output. The timeline is taken from a
sample run of the 419M-parameter model in Table 4.1. 64

4.3 The proportion of all-to-all’s completion time over training step
time when the number of experts grows. Dashed line plots the
data size in one all-to-all operation. 65

4.4 CDF of how much all-to-all is prolonged when it overlaps with
allreduce operation. We mark the median and average slowdown
factors. 65

4.5 Timeline of backward propagating an MoE layer under hybrid par-
allelism. The first all-to-all is prolonged by the allreduce operation
in Stream b. The shadowed part is its original completion time. . 65

4.6 Sampled expert popularity. The distribution is computed as the
ratio between the number of tokens received by the expert and
total number of tokens in one batch. We use the Enwik8 test
set [36] for evaluation. 66

xi

4.7 Backward pass of MoE training. The yellow background is the
period of computing the gradients of the MoE layer. Stream a is
responsible for the computation process and streams b and c are
for communication. This timeline is extracted from a real run of
the 419M-parameter benchmark model in Table 4.1. 69

4.8 We show the scheduling results from Figure 4.7a with tensor
partitioning. All-to-all and allreduce micro-ops are of the same size. 71

4.9 Ratio of tokens that select one of the top-k experts in layer i + 1
given that they have selected the same expert in layer i. 74

4.10 Speedup of training step time against two Baselines. 82
4.11 Speedup of MoE layer’s forward pass completion time. 82
4.12 Speedup of MoE layer’s backward pass completion time. 82
4.13 Speedup of all-to-all time in forward and backward pass. 82
4.14 Training step time speedup over Baseline with different design

choices of the communication scheduler. 84
4.15 Partition size increases from 10MB to 200MB in 16-expert models. 86
4.16 Median and tail inference time. We normalize the inference time

with the ideal result. The median and tail inference time is the
same in Ideal. 87

4.17 95%ile completion time of MoE layer. 88
4.18 All-to-all time in 16-expert MoE. T is Transformer-XL and B is

BERT-Large. 88
4.19 Estimation accuracy of 16-expert MoE. 90

5.1 Normalized expert probability computed by top-2 gating network
from four sampled tokens. Here we use the Sentiment analysis
task list in Table 5.2. 99

5.2 Percentage of tokens computed by top-2 experts over all the tokens
in each layer when using adaptive gating in MoE. 108

xii

Acknowledgments

First, I would like to express my deep gratitude to my advisor, Prof. Hong Xu,

for leading me into the field of computer systems and networking, engaging

in countless inspiring discussions, and providing me with precious guidance,

insightful comments, and kind encouragement. I am also equally thankful to

my co-advisor, Prof. Cong Wang for his continuous support. His wise words,

"Hard work will pay off down the road," have been a constant reminder of the

importance of perseverance and dedication in academic endeavors.

I want to express my gratitude to my mentors during my internship at

ByteDance: Dr. Yibo Zhu and Dr. Chuanxiong Guo. Their expertise and willing-

ness to share their knowledge have played a pivotal role in the development of

my research work. I feel fortunate to have been mentored by Dr. Peng Cheng

at Microsoft Research Asia. My sincere thanks go out to Prof. Aditya Akella

for hosting me as a visiting researcher at The University of Texas at Austin and

providing invaluable feedback on my work. My appreciation also extends to

my qualifying and examination panel members: Prof. Chun Xue, Jason, Prof.

Jianping Wang, Prof. Zhenjiang Li, Prof. Shiqi Wang and Prof. Chuan Wu, for

their constructive suggestions and insights.

I would like to express my sincere thanks to my dedicated collaborator, Dr.

Yimin Jiang, whose support was instrumental in bringing my research ideas

to fruition. I also appreciate the suggestions offered by my fellows at City

University of Hong Kong, Dr. Xiaorui Wu and Dr. Qiang Su, in the challenging

times of my Ph.D. study. I want to thank my senior fellow, Dr. Libin Liu, and

my colleagues at ByteDance, Zherui Liu and Shuguang Wang, for providing all

the technical support and resources for my research.

Special thanks go to my dear friends, Kun Yang, Lin Jin, and Ruoying Ma,

for their companionship since the beginning of my undergraduate studies and

xiii

for sharing both my joy and sorrow. I am also grateful to Dr. Yiding Wang for

helping me shape my career decisions during the final year of my study.

In particular, I want to thank Dr. Fangzhou Wang, who has been the most

supportive and caring friend in my life. Our weekly dinners have consistently

served as a pillar of strength. Without his unwavering encouragement, I could

not complete my Ph.D. study.

Finally, I would like to thank my parents, my aunt, and my cousin for their

endless love and patience.

xiv

Chapter 1

Introduction

1.1 Distributed Deep Neural Networks

In the ever-evolving landscape of artificial intelligence (AI), deep learning stands

as a pivotal innovation, poised to revolutionize industries, enhance decision-

making, and augment our everyday experiences. The rapid expansion of deep

neural networks (DNN) across various fields—including natural language pro-

cessing [5], computer vision [148], reinforcement learning [68], and recommenda-

tion systems [60]—has sparked an imperative for efficient, scalable, and reliable

systems to sustain these sophisticated algorithms.

Over the last decade, we have witnessed a trend towards larger datasets [142],

more complex DNNs [41], and increasingly powerful hardware [105] to boost

computational prowess, leading to unprecedented accuracy levels. Distributed

computation has become essential for scaling DNN workloads effectively, with

systems explicitly engineered for these tasks now at the forefront of modern

cloud computing.

However, this rapid advancement has not been without its challenges, which

present themselves across the different strata of DNN systems. At the summit,

the algorithmic layer is tasked with the development of DNN architectures, the

1

refinement of training algorithms, and the efficient handling of datasets. Fol-

lowing closely is the framework layer, which provides the essential APIs via

platforms such as PyTorch [116] and TensorFlow [2]. This enables the building,

training, and deployment of models, and is further extended to key commu-

nication libraries like NCCL [102] and inference engines like TensorRT [141].

The infrastructure layer underpins these efforts, offering a specialized platform

for DNN execution, complete with resource allocation, task scheduling, GPU

virtualization [33], and the orchestration of storage and network systems [1, 43].

The bedrock of this technological edifice is the hardware layer, which includes

not just the GPU chips, but also the critical compilers and runtime libraries that

accompany them [27, 104].

Given the extensive transformation of system design due to DNN workloads,

it is an arduous task to encapsulate all facets of progress within a single thesis

or to design an all-encompassing system that addresses every emerging issue.

Consequently, this thesis narrows its focus to three distinct yet pivotal contribu-

tions that address specific challenges within the infrastructure, framework and

algorithmic layers.

1.2 Summary of Contributions

In the thesis, we describe three DNN system designs that improve the scalability

and efficiency of distributed DNN workloads by leveraging domain-specific

knowledge of DNN training and inference. Lyra is a scheduler that operates in

the infrastructure. Lina improves the framework layer by optimizing communi-

cation costs. Adaptive gating tries to further elevate the model efficiency from

the algorithmic perspective.

Lyra. Organizations often build separate training and inference clusters for

deep learning, and use separate schedulers to manage them. This leads to

2

problems for both: inference clusters have low utilization when the traffic load

is low; training jobs often experience long queuing due to a lack of resources.

We introduce Lyra, a new cluster scheduler to address these problems. Lyra

introduces capacity loaning to loan idle inference servers for training jobs. It

further exploits elastic scaling that scales a training job’s resource allocation to

better utilize loaned servers. Capacity loaning and elastic scaling create new

challenges to cluster management. When the loaned servers need to be returned,

we need to minimize job preemptions; when more GPUs become available, we

need to allocate them to elastic jobs and minimize the job completion time

(JCT). Lyra addresses these combinatorial problems with principled heuristics.

It introduces the notion of server preemption cost, which it greedily reduces

during server reclaiming. It further relies on the JCT reduction value defined

for each additional worker of an elastic job to solve the scheduling problem as

a multiple-choice knapsack problem. Prototype implementation on a 64-GPU

testbed and large-scale simulation with 15-day traces of over 50,000 production

jobs show that Lyra brings 1.53x and 1.48x reductions in average queuing time

and JCT, and improves cluster usage by up to 25%.

Lina. Scaling model parameters improves model quality at the price of high

computation overhead. Sparsely activated models, usually in the form of Mixture

of Experts (MoE) architecture, have sub-linear scaling of computation cost with

model size, thus providing opportunities to train and serve a larger model at

lower cost than their dense counterparts. However, distributed MoE training and

inference is inefficient, mainly due to the interleaved all-to-all communication

during model computation. This work makes two main contributions. First, we

systematically analyze all-to-all overhead in distributed MoE and present the

main causes for it to be the bottleneck in training and inference, respectively.

Second, we design and build Lina to address the all-to-all bottleneck head-

on. Lina opportunistically prioritizes all-to-all over the concurrent allreduce

3

whenever feasible using tensor partitioning, so all-to-all and training step time

is improved. Lina further exploits the inherent pattern of expert selection to

dynamically schedule resources during inference, so that the transfer size and

bandwidth of all-to-all across devices are balanced amid the highly skewed expert

popularity in practice. Experiments on an A100 GPU testbed show that Lina

reduces the training step time by up to 1.73x and reduces the 95%ile inference

time by an average of 1.63x over the state-of-the-art systems.

Adaptive gating in MoE. Large language models, such as OpenAI’s ChatGPT,

have demonstrated exceptional language understanding capabilities in various

NLP tasks. Sparsely activated MoE has emerged as a promising solution for

scaling models while maintaining a constant number of computational operations.

Existing MoE model adopts a fixed gating network where each token is computed

by the same number of experts. However, this approach contradicts our intuition

that the tokens in each sequence vary in terms of their linguistic complexity

and, consequently, require different computational costs. Little is discussed

in prior research on the trade-off between computation per token and model

performance. This work introduces adaptive gating in MoE, a flexible training

strategy that allows tokens to be processed by a variable number of experts

based on expert probability distribution. The proposed framework preserves

sparsity while improving training efficiency. Additionally, curriculum learning

is leveraged to further reduce training time. Extensive experiments on diverse

NLP tasks show that adaptive gating reduces at most 22.5% training time while

maintaining inference quality. Moreover, we conduct a comprehensive analysis

of the routing decisions and present our insights when adaptive gating is used.

4

1.3 Thesis Organization

Chapter 2 provides more background on distributed DNN workloads. Chap-

ter 3 proposes Lyra, an elastic cluster scheduler for distributed DNN training

workloads. Chapter 4 studies sparsely-activated Mixture-of-Expert models. It

proposes Lina, a communication scheduler for distributed MoE models and

improves training and inference efficiency. Chapter 5 explores sparsity and

adaptivity in the scope of MoE-based language models. It presents adaptive

gating in MoE models and provides in-depth empirical analysis of the trade-off

between computation cost and model performance. Section 5.5 concludes the

thesis and discusses future research directions.

5

Chapter 2

Background & Literature Review

2.1 Distributed DNN Training and Inference

In the domain of DNN, training and inference represent two pivotal workloads

in the DNN lifecycle. Over recent years, the computational demands of DNN

models have surged exponentially, especially in cases like Large Language Mod-

els (LLMs), which now employ billions of parameters. To cope with this growing

computational burden, distributed computation has become indispensable. Nev-

ertheless, the efficiency of distributed DNN is far from optimal, hampered by

several factors such as communication overhead, synchronization requirements,

and memory costs. Additionally, DNN training and inference possess unique

characteristics that require careful consideration. Researchers have been hard at

work proposing various solutions to mitigate these challenges and enhance the

overall efficiency of both DNN training and inference. In this section, we delve

into state-of-the-art solutions for enabling distributed DNN, followed by recent

developments aimed at addressing the communication and memory bottlenecks

in distributed DNN.

6

2.1.1 Parallelism Strategies

Determining how to distribute DNN models across multiple GPU devices, a

problem known as parallelism strategy, is anything but trivial. Numerous

solutions have emerged in recent years to tackle this issue. With advancements

in model architecture and hardware specifications, two primary parallelism

strategies have become standard practice.

The first strategy is data parallelism, which stands as the most widely adopted

approach in distributed DNN. It involves partitioning the input data into multiple

segments, each assigned to a worker. During training, each worker computes gra-

dients of the model parameters based on its data partition and then synchronizes

these gradients with other workers.

The second strategy, model parallelism, is designed for situations where

the entire model cannot fit within a single device. This approach divides the

model parameters into multiple partitions, with each partition assigned to a

worker. There are two methods for partitioning the model. The first approach

partitions the model vertically, i.e., layer-wise, where each worker is responsible

for computing the output of a subset of layers. This is commonly referred to as

pipeline parallelism. GPipe [57] and PipeDream [99] are among the first that

introduces pipeline parallelism and designs efficient training mechanisms by

exploiting micro-batches. The second approach partitions the model horizontally,

splitting the parameter tensor into multiple chunks. It is first introduced by

Nvidia and named as tensor parallelism in [135]. Each worker is tasked with

computing a slice of the model parameters, and the outputs are synchronized at

the end of each step.

More recently, to address the computational demands of LLMs, hybrid par-

allelism has gained popularity. This approach integrates various forms of par-

allelism, combining data parallelism and model parallelism (both layer-wise

7

and parameter-wise) to provide a comprehensive solution for LLM execution.

FlexFlow [64] and Megatron-LM [135] are two notable works that employ hybrid

parallelism to train LLMs.

In the pursuit of elevating the efficiency of distributed DNN, researchers

have ventured into harnessing lower-level parallelism, specifically at the operator

and kernel levels. This approach allows for a more fine-grained optimization

of DNN workloads. Notably, two innovative systems have emerged to address

this challenge: Pathways [11] by Google and Alpa [172] proposed by Zheng et al.

Both solutions advocate a unified controller runtime architecture that combines

the principles of "single program multiple data" (SPMD) and "multiple program

multiple data" (MPMD) models. AlpaServe [83] is a dedicated work for DNN

inference. It reveals a fundamental trade-off between the overhead introduced

by model parallelism and the opportunity to exploit statistical multiplexing to

reduce serving latency in the presence of bursty workloads.

SPMD focuses on harnessing intra-operator parallelism, optimizing the par-

allel execution of operations within a single DNN model. This approach seeks

to maximize computational efficiency by concurrently processing individual

operations or kernels, thereby reducing processing time. MPMD explores the

domain of inter-operator parallelism, aiming to enhance efficiency by paralleliz-

ing the execution of multiple operations or kernels across the DNN model. By

orchestrating the parallel execution of distinct operations, MPMD minimizes idle

time and promotes overall throughput.

2.2 Bottlenecks in Distributed DNN

Intitially, performance bottlenecks in distributed DNN training and inference

were primarily attributed to the communication overhead among workers. How-

ever, as the scale of DNN models continues to grow, the memory cost of storing

8

model parameters has become a significant concern. We thus discuss the existing

work on addressing the communication and memory bottlenecks in distributed

DNN respectively.

2.2.1 Communication Overhead

TicTac [48], ByteScheduler [112] and BytePS [65] are three leading work in effi-

ciently scheduling communication oeprations in distributed DNN training. All

three are designed for data parallel training. TicTac reduces the iteration time by

identifying and enforcing parameter transfers in the order in which the parame-

ters are consumed by the underlying computational model, thereby guaranteeing

near-optimal overlap of communication and computation. ByteScheduler pro-

poses to partition and rearrange the tensor transmissions to achieve theoretically-

optimal training efficiency. BytePS leverages spare CPU and bandwidth resources

in the cluster to accelerate distributed DNN training tasks running on GPUs.

Another set of contributions—BlueConnect [24], Blink [149], and TACCL [129]—

concentrates on designing more efficient collective communication algorithms

as alternatives to the widely adopted communication library NCCL provided

by Nvidia. BlueConnect decomposes a single all-reduce operation into a large

number of parallelizable reduce-scatter and all-gather operations to exploit the

trade-off between latency and bandwidth, and adapt to a variety of network

configurations. Blink identifies the heterogeneity of network resources and de-

signs a communication library for inter-GPU parameter exchange that achieves

near-optimal link utilization. TACCL is a tool that enables algorithm designers

to guide a synthesizer into automatically generating algorithms for collective

communication based on a given hardware configuration and communication

collective.

Optimizing communication costs with network topology in mind, three

notable works—PLink [88], SYNDICATE [91], and TopoOpt [151]—take different

9

routes to achieve their goals. PLink introduces an optimized communication

library that probes the physical network then generates and executes a fitted

hierarchical aggregation plan to take advantage of such locality, and evolves

the plan to adapt to changing network conditions. SYNDICATE proposes a

novel abstraction to break large communication work as smaller pieces as part of

execution planning and perform joint optimization of scheduling and execution

planning by rethinking the interfaces in the networking systems stacks used for

DNN training. TOPOOPT creates dedicated partitions for each training task

using reconfigurable optical switches and patch panels, and jointly optimizes the

topology and parallelization strategy within each partition.

2.2.2 Memory Consumption

When LLM becomes one of the mainstream of DNN tasks, memory gradually

becomes one of the bottleneck as well. With billions of parameters, naively

placing the model on multiple devices still result in a large memory footprint.

To address this issue, researchers have proposed some solutions to reduce the

memory consumption of distributed DNN training.

The most representative work is ZeRO-offload by Microsoft [126]. It is a

memory optimization technique that partitions the model into multiple shards

and places each shard on a different device. The model parameters are then split

into two categories: optimizer states and non-optimizer states. The optimizer

states are replicated across all devices, while the non-optimizer states are only

stored on a single device. This approach significantly reduces the memory

footprint of the model, as the non-optimizer states are typically much larger than

the optimizer states. However, this approach introduces small communication

overhead, as the non-optimizer states must be transferred to other devices during

training. ZeRO-offload then becomes a standard practice in distributed DNN

training, and is adopted by many other systems, such as DeepSpeed [30].

10

Another line of literature tries to make the best use of GPU memory by

letting multiple training tasks concurrently execute on the same device. Zico [85],

Wavelet [150] and Salus [165] are three representative works in this direction. Zico

and Wavelet exploits the cyclic pattern of memory consumption in DNN training

to schedule multiple training tasks on the same device. Salus is a distributed

execution engine that enables two GPU sharing primitives: fast job switching

and memory sharing to dynamically allocates GPU memory to each task based

on their memory demands.

2.3 GPU Cluster Scheduling

GPUs have evolved to become the cornerstone of system infrastructure for hosting

Deep Neural Network (DNN) workloads. As the demand for GPU-accelerated

tasks has grown exponentially, large-scale GPU clusters have been developed

to provide the requisite computational resources. However, the scale of these

GPU clusters has brought about new challenges in cluster management. Both

academia and industry practitioners have responded with a variety of cluster

scheduling systems designed to address these challenges. This section provides

a concise overview of the state-of-the-art GPU cluster scheduling systems.

The early entrants into the realm of GPU cluster scheduling included Op-

timus [111], Tiresias [46], and Gandiva [158]. Optimus introduced a resource-

performance model that predicted DNN model convergence, relying on this

knowledge to estimate training times and schedule tasks. Tiresias adopted an

information-agnostic scheduling approach, relaxing the stringent placement

requirements for training tasks that were not sensitive to locality. Meanwhile,

Gandiva introduced an introspective scheduling policy that leveraged intra-job

predictability for DNN tasks.

Two notable works that focused on online adjustments to resource alloca-

11

tion for DNN tasks to enhance overall cluster performance are AFS [59] and

Pollux [120]. AFS prioritized tasks with greater throughput gains when allo-

cating additional resources to them. Pollux took a step further by proposing

a co-optimization strategy for model convergence and cluster efficiency. This

was achieved by tuning job hyperparameters and resource allocation simultane-

ously. Shockwave [173], inspired Pollux, incorporated fairness considerations

into scheduling by extending market theory to dynamic settings and employing

stochastic dynamic programming.

While most cluster schedulers primarily considered GPU resources, making

the assumption of sufficient CPU and memory resources, Synergy [96] and

Muri [171] stood out by addressing multi-resource allocation problems. Synergy

used optimistic profiling to infer the sensitivity of DNNs to different resources

and made multi-resource workload-aware assignments across a set of tasks.

Muri, on the other hand, packed tasks along multiple resource types in the time

dimension.

Beyond resource allocation, other schedulers focused on different aspects of

cluster efficiency. For instance, AntMan [159], building on the work of Gandiva,

enabled the colocation of resource-guaranteed and best-effort tasks. Gavel [100]

delved into the performance heterogeneity of tasks in heterogeneous clusters.

HiveD [170] aimed to improve resource isolation in multi-tenant GPU clusters by

leveraging virtual private clusters.

A distinct line of research analyzed GPU cluster workloads. Philly [61], for

instance, examined the granularity of GPU resources and the gang scheduling

requirements of DNN tasks, although these observations have become somewhat

outdated due to advancements in GPU hardware and the advent of elastic DNN

training. Additionally, PAI [154] openedourced a workload trace from Alibaba

and highlighted several primary challenges in GPU clusters, including low GPU

utilization, long queueing delays, hard-to-schedule tasks with demanding re-

12

quirements for high-end GPUs, load imbalances across heterogeneous machines,

and potential CPU bottlenecks.

We highlight the diverse and evolving landscape of GPU cluster scheduling

systems, each tailored to address specific challenges and aspects of cluster

efficiency and management.

2.4 Adaptive and Sparse Computation

Adaptive and sparse computation has become a popular approach to keep

scaling the DNN models, among which Mixture-of-Experts (MoE) is one of the

most representative ones. Switch Transformer [37] and GShard [79] promote

the usage of MoE in DNN models.GLaM [34] has shown empirically that MoE

architecture effectively enlarges the model capacity while keeps low computation

costs. Extensive work from both theory-side and system-side has been proposed

to advance this particular area. We therefore follow such progress and discuss

the recent developments of MoE-based DNN models from both perspectives.

2.4.1 Algorithms

[177] analyzes the trade-off between MoE training stability and quality and

the fine-tuning performance comparison with dense models. It then provides

suggestions how to determine the expert size, expert capacity and routing

algorithms to achieve optimal performance. To handle imbalanced token-to-

expert assignment, [174] proposes to have experts selecting the top-k tokens

instead of letting tokens select the top-k experts. [80] introduces new balanced

assignment of experts that formulates token-to-expert allocation as a linear

assignment problem, allowing an optimal assignment in which each expert

receives an equal number of tokens. [178] adopts stochastic routing. [127]

proposes to modify the feedforward layer to hash to different sets of weights

13

depending on the current token, over all tokens in the sequence in a deterministic

approach.

2.4.2 Systems

FastMoE is the first MoE framework. It provides simple API and designs

dedicated computation kernels to accelerate the training process. FasterMoE [50]

and SmartMoE [166] are two follow-up contributions. FasterMoE proposes a

dynamic shadowing approach to cope with load imbalance, and a smart fine-

grained schedule that splits different operations and executes them concurrently.

SmartMoE designs a dedicated approach to search for the best parallelism

strategy for MoE models. It finds optimization opportunities in an enlarged

space of hybrid parallelism, considering the workload of data-sensitive models

DeepSpeed is one of the leading framework that supports converting dense

DNN models to sparse MoE models [124]. It also introduces a pyramid-like MoE

architecture where expert size grows along with the depth of the model. Tutel [58]

identifies the inefficiency of static execution in MoE models and proposes a highly

scalable stack design and implementation for MoE with dynamically adaptive

parallelism and pipelining. Tutel is later integrated into DeepSpeed.

SE-MoE [133] introduces acceleration designs for both training and infer-

ence. In training, it proposes Elastic MoE training with 2D prefetch and Fusion

communication over Hierarchical storage, so as to enjoy efficient parallelisms in

various types. For scalable inference in a single node, especially when the model

size is larger than GPU memory, SE-MoE forms the CPU-GPU memory jointly

into a ring of sections to load the model, and executes the computation tasks

across the memory sections in a round-robin manner for efficient inference.

14

Chapter 3

Lyra: Elastic Scheduling for Deep

Learning Clusters

3.1 Introduction

Recently, Deep Neural Networks (DNNs) have seen wild successes in many

applications [78]. Hyperscale online service providers have adopted DNN, and

build large-scale GPU clusters to accelerate DNN workloads for both training

and inference. GPU cluster scheduling is a fundamental and critical task to utilize

the expensive infrastructure efficiently, by optimizing job resource allocation and

task placement.

It is common practice today to separately build and manage two types of

GPU clusters, one for training and one for inference. This is because, for the

same model, inference requires less computation and GPU memory than training

and is less likely to utilize the numerous cores of training GPU [110, 26, 101].

Inference clusters usually use weaker GPUs, like Nvidia T4, with a fraction of

the resources of the training GPUs, such as Nvidia V100 and A100.

This separation creates problems for both sides (Section 3.2). Our observations

are based on experiences of operating production clusters with O(10k) GPUs for

15

training and even more for inference. Specifically, inference cluster utilization

is usually low (<40%) for an extended period of time due to the diurnal traffic

pattern. At the same time, training jobs experience long queuing time before

they can start, with an average of over 3,000s and 95%ile of almost 10,000s as

seen from a 15-day trace with over 50,000 jobs. The long queuing time is due to

both the high cluster utilization and the GPU resource fragmentation.

To address these problems, we propose capacity loaning to allow the inference

cluster to loan the idle GPU servers during low-traffic periods to run training jobs,

and reclaim them back when inference workloads increase again (Section 3.2.1).

Capacity loaning mitigates both the utilization problem for inference and queuing

problem for training. It is feasible for training jobs that do not have strict

requirements on GPU type. Then to ensure the on-loan servers are rapidly

utilized by training jobs when they become available, we draw inspiration from

elastic scaling [53, 117, 106] (Section 3.2.2). Elastic scaling enables a running job

to scale out or scale in to better utilize the dynamically changing resource pool.

It also helps reduce queuing delay since an elastic job can start with a small

number of workers first and increase its workers when more resources become

available.

Capacity loading and elastic scaling create new degrees of freedom for clus-

ter scheduling. As we navigate the new design space, we meet several new

challenges that must be addressed before we can reap the benefits.

First, though loaning decisions can be solely made by the inference cluster

scheduler to ensure inference workloads are not affected, reclaiming is more

intricate. When the inference cluster needs to reclaim on-loan resources, the train-

ing scheduler has to preempt all running jobs on those servers. Given the high

overhead of preemption and prolonged running time to the jobs, the scheduler

must carefully select the servers in order to minimize the total preemptions.

Second, job scheduling is inherently more complicated with elastic scaling.

16

Resource allocation has to consider a mix of inelastic jobs with fixed demand

and elastic jobs with variable demand. We show that classical scheduling policies

such as shortest job first (SJF) no longer work well with elasticity, and finding

the JCT-optimal solution for merely two jobs is difficult. Given the allocation

results, the scheduler still needs to determine the worker-server placement to

minimize fragmentation, where servers are now heterogeneous with different

GPUs because of capacity loaning.

Our key insight in solving these challenges is to prioritize the minimum

resources needed by a job over its elastic demand, and to prioritize the dedicated

training servers over the on-loan inference servers. This makes sense because

the minimum demand of an elastic job is equivalent to an inelastic job to which

not allocating resources is detrimental, but the elastic part can be fulfilled later

without stalling the job.

Our solution, therefore, exhibits a two-phase structure following the above

insight. For reclaiming, we first kill the elastic workers running on on-loan

servers since stopping them does not lead to any job-level preemption. When

preemption becomes inevitable, we characterize the problem as a knapsack

problem with dependent item values [97] and develop an efficient heuristic to

solve it (Section 3.4).

For resource allocation, we first allocate for both inelastic jobs and elastic

jobs’ base demand, with the aim of launching as many jobs as possible. We then

scale out the scheduled elastic jobs if resources permit. The first phase can be

solved using SJF to reduce queuing time and the second phase is formulated as

a multiple-choice knapsack problem [138] to minimize running time, which in

practice can often be solved using dynamic programming (Section 3.5.2). We then

tackle the placement problem by placing the inelastic jobs on training servers,

and elastic jobs on on-loan servers as much as feasible. Jobs are ordered based

on the best-fit-decreasing policy to address the bin packing nature [25] and

17

minimize fragmentation (Section 3.5.3).

Putting everything together, we design (Section 3.3–Section 3.5), implement

(Section 3.6), and evaluate (Section 3.7) Lyra, a new cluster scheduler that realizes

capacity loaning with elastic scaling. Lyra has an orchestrator that manages

capacity loaning by executing instructions from the inference scheduler on when

and how much to loan or reclaim, and by deciding which on-loan servers to

return for reclaiming. Then a job scheduler periodically determines allocation

and placement, and scales new and existing elastic jobs in response to resource

and job dynamics. To be pragmatic, Lyra considers elastic scaling only for large

DNNs whose training throughput scales well in our experiments.

The results of Lyra are promising (Section 3.7). We build a high-fidelity

simulator, and replay a 15-day job trace collected from 3,544 training GPUs and

4,160 inference GPUs. We find that compared to a FIFO scheduler, Lyra can

reduce the average and 95%ile JCT by up to 1.48x and 1.47x, respectively, and

improve GPU usage by 25%. In terms of job scheduling, Lyra also outperforms

state-of-the-art Pollux by 1.28x and 1.27x in median JCT and 95%ile JCT when

elastic jobs occupy 36% training resources.

We summarize our contributions as follows.

• With production traces, we report the problem of separate management of

training and inference clusters, i.e. low utilization in the inference cluster

and long queuing time in the training cluster.

• We propose cluster-level capacity loaning and job-level elastic scaling, two

new control knobs for cluster scheduling to address the above problems.

• We study the resulting cluster scheduling problems, develop a key insight

to prioritize the minimum resources needed by each job to address elasticity,

and use a principled approach to characterize and solve each problem.

• We design and implement Lyra, a novel cluster scheduler that integrates

18

our solutions. Lyra works with existing resource management frameworks

and is ready for deployment. Evaluation using testbed experiments and

large-scale simulations validates its effectiveness.

3.2 Motivation

We start by presenting our motivation of Lyra.

3.2.1 Why Capacity Loaning?

Large GPU clusters are built to accommodate inference and training workloads

with distinct requirements. Customer-facing inference jobs are latency-sensitive

[26, 110]. Training jobs are much more resource-heavy and run for extended

periods of time. Thus they emphasize completion times instead. Operators

usually deploy separate clusters with different GPUs for training and inference,

and manage them independently to minimize interference. Our production

environment, for example, mainly uses Tesla V100 in the training cluster and T4

in the inference cluster. Job traces show that this practice leads to low utilization

of inference resources and sub-optimal performance for training jobs.

Inefficient inference cluster utilization. Similar to other web services [86], the

inference cluster is overprovisioned in order to handle the peak traffic. Inevitably,

its resources are often underutilized due to the dynamic inference requests

generated by customers.

We plot the GPU utilization in one of our inference clusters with 5-minute

intervals for one week’s time in Figure 3.1. Utilization is defined as the fraction of

GPUs occupied by at least one inference job. We observe a clear diurnal pattern:

peak traffic lasts about four hours at night, and demand trough occurs before

dawn. The peak-to-trough ratio is ∼2.2 within a day, and the average utilization

is ∼65%, both implying that there are abundant resources to be exploited in the

19

inference cluster for extended periods of time.

Figure 3.1: Inference cluster GPU utilization, i.e. fraction of GPUs serving at least one
request in our inference cluster. The measurement spans one week from Oct 1 to Oct 7,
2020. The cluster has about 4,000 GPUs. The utilization changes from 42% in bottom
hours to 95% in peak hours.

Long queuing time for training jobs. Turning to the training cluster, a salient

observation we make is that many training jobs experience long queuing before

they can be dispatched with enough resources. Figure 3.2 depicts the hourly

queuing job ratio in our training cluster for the same week as in Figure 3.1. A

significant fraction of jobs (as high as 100%) still has to wait for resources from

time to time. The average queuing time is longer than 3,000 seconds and certainly

non-negligible.

The long queuing time is not only due to lack of resources. In fact, the average

GPU utilization across the same period of time is 82%, which means there are

often idle GPUs. The dynamic training demand certainly also contributes to the

long queuing time. In addition, training demand does not exhibit clear patterns

for prediction.

Capacity loaning. We propose to exploit the unused inference resources to run

training jobs temporarily, i.e. loaning inference capacity for training. It mitigates

both problems above at the same time: The inference cluster is better utilized,

and training jobs have more resources to help reduce queuing time. The on-loan

capacity can be reclaimed dynamically in case the inference traffic spikes to

20

Figure 3.2: The fraction of queuing jobs among all the newly-submitted jobs in each
hour in our training cluster for one week. A job suffers queuing time when the scheduler
fails to satisfy its resource demand on the first try. If the ratio is high, it means that most
of the jobs submitted in that hour are queued. The cluster has ∼3,500 GPUs, and the
average utilization is 82%.

ensure the quality of service.

Though training jobs typically request specific GPUs, we find that up to 21%

of jobs in our production traces do not do so. These fungible workloads can work

with any GPU types in different execution runs. Lyra can launch these jobs on

the loaned inference servers rather than waiting for training servers. To ensure

feasibility, we may need to adjust the local batch size of the training job so that

the models and the intermediate data can fit into the smaller inference GPU

memory. We increase the number of workers so that the global batch size does

not change to ensure the same model performance. This is straightforward since

we know the GPU memory differences.

Another more aggressive way to exploit the loaned servers is to run a training

job on heterogeneous GPUs, i.e. run on both training and inference GPUs

(e.g. V100 and T4) at the same time. Heterogeneous training further improves

scheduling flexibility with more potential gains. However, it requires delicate

systems and algorithm support to work well, since the workers have to adopt

different hyperparameter settings and inherently progress at different paces [109,

21

18, 99, 163]. Given that heterogeneous training remains an active research

topic, our production training system only provides experimental support for

it at the moment. Lyra’s design does not depend on it, and we evaluate its

effect in Section 3.7.2 when it is enabled for a small fraction of our jobs with a

performance penalty.

3.2.2 Elastic Scaling for the Full Potential

To better cope with the constantly changing cluster capacity and further exploit

the loaned inference resources, Lyra considers elastic scaling. Recently, elastic

scaling has been introduced into ML frameworks [53, 117, 106] where a job can

take a variable number of workers according to resource availability. One can

even adjust the number of workers on-the-fly when the job is running.

Elastic scaling can greatly facilitate capacity loaning. With additional re-

sources, training jobs can dynamically scale out to use more workers with more

inference GPUs to accelerate training (provided they are running on inference

GPUs already). When the cluster experiences high loads, some jobs could scale

in to free some servers. In addition, when vacating the inference servers so

they can be returned, the scaling-in operation reduces the need to completely

preempt the jobs which incurs high overheads with checkpointing, re-launching

containers, etc.

An acute reader might be wondering about the feasibility and benefit of

elastic scaling in general. Indeed, besides the scalability issue of distributed

training systems [113, 66, 161, 59], when we change the number of workers

on-the-fly, the training hyperparameters may have to be updated as well. This

can be fairly complex: for example, simply fixing the local batch size and linearly

increasing the global batch size may impede the model convergence [44].

Thus in Lyra, elastic scaling is only adopted for jobs that scale well to the

number of workers without updating the local batch size or without updating

22

the global batch size. Existing studies [63, 94, 23, 92, 164, 82, 7, 135] show that

certain models like ResNet [51] and BERT [32] satisfy this requirement. We also

find that, as shown in Figure 3.3, ResNet-50 [51], VGG16 [137], BERT [32], and

GNMT-16 [157] all enjoy good throughput scalability and are well-suited for

elastic scaling. Our traces reveal that the large jobs (∼5% of all jobs) from these

model families account for 36% of training cluster resources with an average

running time of 14.2 hours, suggesting ample potential gains using Lyra. For

these jobs, Lyra also restricts itself to limited elasticity where the worker number

varies within a range.

(a) ResNet (b) VGG

(c) BERT (d) GNMT-16

Figure 3.3: Throughput of four elastic training jobs using Tesla V100 GPUs. The workers
are doubled every five epochs, starting from 1 worker. In our testbed, each server hosts
8 GPUs connected by NVLink. Servers use 100G InfiniBand interconnects. Each worker
container uses 2 GPUs.

23

3.2.3 Existing Cluster Schedulers

Much prior work exists on GPU cluster scheduling amid the proliferation of DL

workloads. Lyra differs in two aspects.

First, capacity loaning represents a new angle to cluster scheduling that

few have studied. Though the shared infrastructure is exploited by recent

systems [147, 87, 143, 140, 176, 154], their focus is to schedule different types of

workloads in a single cluster. Lyra instead focuses on virtually loaning resources

between two different clusters. Specifically, it considers the problem of how to

reclaim the transient on-loan resources while minimizing its negative impact

on training jobs running on them (Section 3.4), which has not been considered

before. Further, Lyra takes advantage of the elasticity of training jobs to better

utilize the dynamic cluster resources.

Second, some recent studies also considered scheduling elastic jobs. Gan-

diva [158] adopts an opportunistic approach to grow or shrink the number of

GPUs used by a job without considering cluster-wide efficiency. AFS [59] greedily

prioritizes jobs with the highest marginal throughput gain per GPU. Pollux [120]

co-optimizes resource allocation and training hyperparameters to achieve high

resource efficiency.

Compared to them, Lyra exploits the interplay between elastic scaling and

capacity loaning to further improve the performance. In terms of technical

approach, Lyra preserves the problem nature of scheduling elastic jobs and treats

it as a variant of the knapsack problem, enabling it to make globally good allo-

cation decisions and outperform greedy local heuristics in prior work. Though

Lyra does not consider tuning hyperparameters, it can be readily integrated into

Lyra (Section 3.7.4).

24

3.3 Design Overview

In this section, we describe Lyra’s overall architecture and the key design ques-

tions we need to address.

Overall architecture. Lyra is a GPU cluster scheduler that exploits capacity

loaning with elastic job scheduling. It runs on top of a cluster resource manager

such as YARN [146] and Kubernetes [75] to execute its decisions.

Job Queue
② Jobs & Resource

Resource
Orchestrator

Job Scheduler
③

Allocate

(d) Notify Preemption Reclaim
(a) Loan/Reclaim

Amount

Job Profiler
①

Profile
(b) Select
to Reclaim

④ Preempt⑤ Interrupted Jobs

Training Inference(c)
Loan

Reclaim

Figure 3.4: Lyra system architecture. Solid lines indicate control flow and dashed ones
data flow. Red lines represent capacity loaning workflow, while blue ones elastic scaling
workflow. Each square represents a GPU server; the gray ones are in use.

Figure 3.4 presents Lyra’s architecture. At the cluster level, the resource

orchestrator receives instructions from the inference cluster about the number

of servers to loan or reclaim (a), determines which servers shall be returned

for reclaiming (b), and commands the underlying resource manager to move

the selected servers virtually across management boundaries (c). When the

orchestrator reclaims on-loan servers, it may need to preempt the training jobs

running on them (d). Job preemption is executed via the job scheduler.

At the job level, jobs are submitted to the queues. The job profiler estimates

the workload 1 after jobs are enqueued. The job scheduler 2 periodically collects

job status and resource usage of the training cluster. Then it 3 computes

the resource allocation and placement decisions for each job. Meanwhile, it

gets preemption instructions from the orchestrator, interrupts the running jobs

25

4 , and puts them back into the job queues 5 . Job launching, scaling and

interruption actions are again executed by the resource manager. Job scheduler

works periodically in a much smaller interval than the orchestrator in order to

better handle job dynamics.

Since Lyra mainly deals with the training cluster and does not interfere

with inference cluster scheduling, we use “jobs” to simply refer to training jobs

hereafter without ambiguity. The basic unit of capacity loaning is a physical

server. This is to prevent training jobs from interfering with the inference jobs on

the same server.

Key questions. Lyra’s design is centered around two key questions.

• Server reclaiming. Which servers should be returned so that the number

of preempted jobs is minimized, when some on-loan servers need to be

reclaimed?

• Job scheduling. How should we determine resource allocation across jobs,

and how do we place a job’s workers on servers, when some jobs are elastic

and some servers are loaned from the inference cluster?

We now present how we address them with Lyra’s detailed design in Sec-

tion 3.4 and Section 3.5, respectively.

3.4 Capacity Loaning and Reclaiming

Lyra moves resources dynamically across inference and training clusters to

improve utilization and training performance.

Assumptions. We presume that the inference cluster scheduler dynamically

estimates the capacity needed to meet the latency, GPU utilization [76], or

other performance targets, based on the predicted inference traffic [47, 132, 26].

Inference workloads are able to grow or shrink their containers along with the

26

incoming traffic. Inference scheduler informs Lyra’s resource orchestrator of (1)

the amount of resources available for loaning when traffic is low, and (2) the

amount of resources to be reclaimed from training in busy hours if any. That is,

the inference cluster scheduler autonomously determines when and which servers

to lend, and when and how many servers to ask back, based on its own policy.

The inference performance is not affected by capacity loaning.

The key question for the training scheduler is the reclaiming mechanism as

mentioned in Section 3.3, i.e. which on-loan servers should be returned given

the number of servers needed by the inference scheduler. This matters because

reclaiming a server entails preempting all its running jobs immediately. A job

with checkpointing would incur overheads to save and load the checkpoint when

resuming training later. If the job does not perform checkpointing [95], which is

common in practice in our environment, its entire progress is lost and training

has to restart from the very beginning. Clearly, both are undesirable and we

strive to minimize preemptions by strategically picking the servers to return.

We propose a solution to reduce the negative impact on the training jobs

hosted by the on-loan servers.

Minimizing preemptions. Vacating an on-loan server means its jobs are pre-

empted in a cluster with no elastic jobs. We start with how Lyra minimizes

inevitable preemption under this case. and will explain how elastic scaling plays

its part in minimizing preemptions in Section 3.5.3.

Denote the number of servers that need to be returned at this point as NR.

Our problem is to pick NR on-loan servers—which host inelastic jobs’ workers—

in order to minimize preemptions. More concretely, we choose to minimize

the number of preempted jobs so fewer users are affected. This implies when

reclaiming a server, we prefer the one with a big job to the one with a few small

ones.

The problem closely resembles the classic knapsack problem (i.e. the 0-1

27

knapsack problem): The number of servers to reclaim NR can be considered as

the capacity of the knapsack; each server consumes one unit capacity, and the

number of running jobs is each server’s preemption cost (i.e. value). However,

the server’s preemption cost actually has inter-dependencies that make the

problem more difficult.

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

Figure 3.5: A reclaiming example. Each server has 8 GPUs. GPUs in-use are indicated
by the job ID inside each square.

Server # running jobs sum of job’s GPU fraction sum of job’s server fraction

1 1 0.5 0.5
2 1 0.5 0.5
3 1 1 1
4 1 0.8 0.5
5 2 0.4 1
6 1 0.8 0.5

Table 3.1: Different definitions of server preemption cost for the reclaiming example in
Figure 3.5.

Consider an example as depicted in Figure 3.5. Table 3.1 shows each server’s

preemption cost as the number of its running jobs (second column). Suppose we

need to reclaim two servers. Servers 1 and 2 are obviously the optimal choice

with one preemption. Yet the corresponding knapsack problem would select

any two 1-cost servers such as 3 and 4 which lead to more preemptions. The

issue here is that in our problem the costs of servers are coupled when they host

the same job(s), whereas in the 0-1 knapsack problem the cost is independent of

each other. Reclaiming server 1 for instance results in an idle server 2 whose cost

28

becomes 0 instead of 1.

Knapsack problem with dependent item values is known to be NP-hard [97].

When NR is one server, selecting the one with the fewest preemptions is simply

by iterating all the on-loan servers. Given an NR larger than a single server, we

propose to resolve the dependency by treating it as part of the server preemption

cost. One possible way is to define server preemption cost as the sum of the

GPU fractions of each job on the server. For instance, server 4’s cost would be

0.8 as it hosts 80% of job c’s GPUs, and server 5’s cost is 0.4 (0.2+0.2) as shown

in Table 3.1. One can immediately see that this does not work well as it does not

capture the job count. It causes server 5 to be selected with the least cost, which

actually leads to two preemptions. Thus we choose to define server preemption

cost as the sum of the server fractions of each job as shown also in Table 3.1.

Server 4’s cost would thus be 0.5 as it hosts job c and the workload of job c

is shared by two servers as shown in Figure 3.5. This way server 5’s cost is

0.5+0.5=1, i.e. the highest.

Once the preemption cost of each server is computed, the orchestrator selects

the servers using the following heuristic: it iteratively picks the server with

the lowest preemption cost, preempts its jobs by removing them from all their

servers, and updates the cost of these servers correspondingly, until NR servers

are vacated. In case of a tie in the preemption cost, we additionally consider the

collateral damage incurred if the server is reclaimed.

3.5 Job Scheduling

Lyra schedules jobs—both inelastic and elastic—to reduce overall JCT by utilizing

resources as efficiently as possible. We start by explaining the challenge due to

elasticity (Section 3.5.1). Then we present the solutions to the two facets of our

scheduling problem. The first is resource allocation with both elastic and inelastic

29

jobs, i.e. how to determine the number of workers each job gets (Section 3.5.2); the

second is placement, i.e. which servers to place a job’s workers on (Section 3.5.3).

Throughout this section, we assume that training throughput scales linearly

with the number of workers within the scaling range, i.e. job’s running time is

inversely proportional to resources allocated, as discussed in Section 3.2.2.

3.5.1 Challenge of Elasticity

Job elasticity presents a unique challenge to resource allocation. Conventional

schedulers either deal with jobs with fixed demands, or ones that can arbitrarily

scale [59, 120]. However, for jobs with limited elasticity [106], the question of how

to arbitrate resources so as to minimize average JCT is intricate.

Let us consider a simple example as shown in Table 3.2. There are two elastic

jobs with different minimum running times when allocated their maximum

demand. Assume the cluster has eight workers in total. Table 3.3 shows three

common allocation strategies and the corresponding JCT performance. In so-

lution 1, we favor job A by giving it the maximum demand; in solution 2, we

favor B instead; and in solution 3 we equally allocate resources to them. All three

strategies lead to different JCTs and the difference between the worst and best is

24%, demonstrating that inefficient allocation can lead to poor JCT performance.

Job wmin wmax Min. running time

A 2 6 50
B 2 6 20

Table 3.2: Two elastic jobs and their demand information. Jobs complete in min. running
time when allocated with wmax workers.

Classic algorithms are not optimal. One may be wondering if the classic shortest

(or smallest) job first strategies would work here. At least in the example of

Table 3.2, the optimal allocation is indeed to first satisfy job B, which has the

shortest running time. Yet, we can construct a counter example as depicted in

30

Solution
Initial allocation JCT Average

JCT
A B A B

1 6 2 50 53.33 51.67
2 2 6 63.33 20 41.67
3 4 4 60 30 45

Table 3.3: Possible resource allocation results for the two jobs when they share a cluster
that can host 8 workers. Only the initial allocation is shown; once the first job finishes,
the other is immediately allocated more resources as much as possible. Three solutions
lead to very different JCTs.

Job wmin wmax Min. running time JCT when favored Avg. JCT

A 2 3 100 A: 100, B: 24 62
B 2 6 20 A: 106.67, B: 20 63.33

Table 3.4: A counter example with two elastic jobs, where prioritizing A with longer
running time is actually better for JCT.

Table 3.4 to show that this does not always work. We slightly modify job A to

have a maximum demand of 3, and minimum running time of 100; the other

setup is identical to Table 3.2. In this case, if we satisfy B first, the average JCT

(63.33) is actually worse than satisfying A’s demand first (62).

Intuitively, shortest job first, or SJF, is designed for fixed job running times

with the intuition that each job should be given the least queuing time, which is

the only variable in computing JCT. In our case, job running time itself varies

along with the resource allocated, which in turn affects the overall JCT and

makes the problem more complex.

More specifically, the above examples reveal two characteristics of elastic

job’s running time that SJF cannot handle. (1) Elastic scaling complicates the job

sorting decision of SJF. Since job running time varies with the resources allocated,

it is no longer apparent that we simply sort them based on their minimum

running time. As shown already, doing so does not lead to an optimal result. (2)

The resource efficiency of each job is different. In Table 3.4, job A has a larger

31

workload (i.e. product of maximum demand and minimum running time) than

B, implying that the running time improvement of A is larger than that of B if

both are given the same number of workers. Even though the resource allocation

difference is merely one when we prioritize different jobs, job A’s running time

contributes to a 6.67-second JCT reduction while job B’s only increases by 4

seconds.

In the simplest two-job case, we can analyze the outcome of different alloca-

tion strategies. The complete theoretical analysis is omitted here for brevity and

can be provided upon request. Allocation in the general case is undoubtedly

more complicated with more elastic jobs plus inelastic jobs, as the optimal strat-

egy requires enumerating the exponentially many possible resource allocations.

Our quest in the following is, therefore, to find a good heuristic for the problem.

3.5.2 Two-Phase Resource Allocation

Intuition: Prioritize inelastic workload. To ease the challenge of elasticity, our

insight is that an elastic job has two types of demand: a base demand that is

inelastic in nature, i.e. the minimum demand, and a flexible demand that is elastic.

They should be treated separately: The base demand essentially corresponds to

an inelastic job whose allocation strategy is binary, and not allocating resources

to it incurs more queuing delay to the job. In contrast, the flexible demand can

be unfulfilled without serious impact since the job is still making progress with

base demand.

Therefore, we treat the inelastic workload, including elastic jobs’ base demands

and inelastic jobs, as the first class citizen. We schedule them first with all

available resources to minimize the average JCT. This also avoids starvation.

Then in phase two, we consider the flexible demand of elastic jobs to fully utilize

the remaining resources from phase one.

Setup and assumptions. We focus on solving the offline setting myopically

32

Job BJob A

1 1
2

3
4

Group Item Weight JCT Reduction Value

A 1 2 50

B

1 1 20
2 2 30
3 3 36
4 4 40

Figure 3.6: Item weights and JCT reduction values for jobs in Table 3.4. Here, we assume
job A needs 2 GPU per worker and job B 1 GPU per worker.

where the set of jobs and resources are given, and cope with the job dynamics

and cluster capacity change by periodically performing scheduling in high

frequency. This is common in the literature [169, 38]. Our scheduling solution is

non-preemptive to minimize disruptions to training; preemption only happens

during reclaiming when it becomes inevitable as in Section 3.4. Thus at a

scheduling epoch, the set of available resources refers to idle GPUs and GPUs

being used by flexible workers for resizing (including on-loan GPUs), and the set

of jobs includes those waiting in the queue and running elastic jobs (only flexible

workers). The on-loan inference GPUs are normalized relative to training GPUs

when calculating the resource capacity.

We rely on job’s running time information (minimum running time for elastic

jobs), which can be predicted with profiling and ML methods [56, 175].

Two-phase heuristic design. We now elaborate our heuristic. The problem in

phase one is how to minimize average JCT for jobs with fixed demands and

known running times, for which we adopt the shortest job first (SJF) policy [35]

which is a sensible and commonly used solution. As long as there are idle GPUs

and pending jobs, we schedule job j∗ with the smallest running time. If the

demand of j∗ exceeds the remaining capacity, we remove it from the pool and

continue.

Phase two is more interesting. We must determine the number of additional

GPUs elastic jobs get to maximize the JCT reduction. Elastic jobs here include

33

those already running. It turns out this problem can be transformed into multiple-

choice knapsack problem [138]: The knapsack’s capacity is the number of remaining

GPUs. An elastic job j is a group with wmax
j − wmin

j items, each representing a

possible allocation for j’s flexible demand. An item’s weight is the number of

GPUs in this allocation, and its value is its JCT reduction over the job’s maximum

running time. Figure 3.6 illustrates this transformation with the two-job example

in Table 3.4. The problem is to pack the items into the knapsack so that the total

value is maximized, with the constraint of taking exactly one or zero items from

each group.

The multiple-choice knapsack problem, similar to the classical knapsack, is

NP-hard and often solved by dynamic programming which runs in pseudo-

polynomial time [138]. With a moderate number of GPUs and jobs, dynamic

programming can usually solve the instance efficiently. We find that the longest

solution time in our evaluation is 0.02s with 354 items and 245 GPUs which is

much shorter than a typical job’s time use.

3.5.3 Worker Placement

Given the allocation results, i.e. number of workers each job gets, we still need

to determine the placement of each worker to complete scheduling. Our goal is

to reduce fragmentation. The primary concern is the mix of inelastic and elastic

jobs as well as the transient on-loan servers with different GPUs.

Our fundamental strategy is bin packing with best-fit decreasing (BFD) heuris-

tic [108]. Jobs are sorted in decreasing order of their per-worker GPU demand

as GPU is most likely the bottleneck resource for training. Starting from the

largest job, we place each worker of the job into a non-empty server that best

fits its demand; if none has sufficient remaining resources, we place it on a

new server. If the job is elastic, we prefer to place it on inference servers in

order to maximize the potential for scaling in during reclaiming and reduce job

34

preemptions. If it is inelastic, we prefer to place it on training servers. When

placing elastic jobs, we also place their base and flexible demands on separate

groups of inference servers so that during reclaiming (Section 3.4), Lyra can

release the server group for flexible demands first without any preemption to

see if this alone is sufficient.

3.6 Implementation

We have implemented a prototype of Lyra with about 3500 lines of Python. The

prototype works with our existing YARN and Kubernetes deployment to move

servers across clusters virtually, manage worker containers for training, and

monitor the status of servers and workers.

We highlight key details of the implementation as follows.

Interface for capacity loaning. During loaning, resource orchestrator need to

update the available resource of each cluster once the operation is decided.

We create a whitelist API to facilitate capacity loaning operations. Both Lyra’s

scheduler and the inference scheduler maintain their own whitelist of servers

under their control. During loaning, the orchestrator adds on-loan servers to

Lyra scheduler’s whitelist according to inference scheduler’s instructions. In

reclaiming, the orchestrator removes the selected servers from Lyra’s whitelist

after its scheduler confirms they no longer have running workers.

Inference resource usage predictor. We develop a simple NN model to predict

the inference resource usage. The predictor is an LSTM model with a window

size of 10 and two hidden layers. We apply Adam optimizer and use MSE

to compute loss. We predict the resource usage of the next five minutes and

compare the average resource usage to the ground truth. The average loss is

0.00048 over 1440 data points. With the predictor, Lyra can initiate reclaiming

decisions in advance before the inference resource usage increases.

35

Data locality and resource isolation. Lyra performs capacity loaning only

between clusters in the same datacenter to ensure the network bandwidth across

servers is consistently high [8, 136]. Also, the basic unit of loaning is a physical

server so co-location of inference and training jobs is not possible, and no

additional isolation mechanisms are needed.

Enable elastic scaling. We enable elastic training in our environment with a few

modifications to the ML frameworks. Chiefly, we embed a controller process to

each elastic job that coordinates the worker join and departure. As presented

before, an elastic training job has a base demand and a flexible demand. Base

demand guarantees the gang scheduling of minimum requests and the flexible

demand shortens the running time whenever possible while preserving loss

convergence. Recent work [106, 159] developed more complete scaling solutions

that our implementation could also utilize.

Handle heterogeneous GPU training. As discussed in Section 3.2, a small

portion of training jobs can run on heterogeneous GPUs experimentally. When

this feature is turned on, Lyra’s job scheduler considers these jobs with the lowest

priority on the remaining servers after all other jobs are scheduled. The actual

scheduling logic for these jobs remains the same as we discussed in Section 3.5,

except that if they are elastic, their base demands are placed on training servers,

and flexible demands on inference servers whenever possible.

3.7 Evaluation

We evaluate Lyra using large-scale simulations and testbed experiments with

traces from our production clusters.

The highlights of our findings are:

• In simulations, Lyra shows salient benefits with 1.53x and 1.48x reductions

on average queuing time and JCT, respectively, compared to the baseline

36

FIFO scheduler. When working alone, capacity loaning has 1.39x and 1.31x

reductions in average queuing time and JCT, and elastic scaling has 1.35x

and 1.38x reductions in the same metrics.

• Compared to state-of-the-art scheduler Pollux [120], Lyra’s scheduling algo-

rithm brings 1.35x average queuing time and 1.42x average JCT reductions

when both consider tuning the training hyperparameters. Lyra’s reclaiming

algorithm performs comparably to the optimal solution with only 1–3ms

running time.

• In testbed, Lyra improves average job queuing time by 1.38x and average

JCT by 1.22x over the Baseline without loaning or scaling. Preemption

only happens to ∼9% of the jobs in reclaiming with an average 63-second

overhead.

3.7.1 Setup

Traces. We rely on a 15-day job trace from one of our production training clusters

with 3,544 GPUs (443 8-GPU servers). There are 50,390 training jobs, and job

running time range from minutes to days. We also use a GPU utilization trace

from the inference cluster for the same time period. Part of the traces has been

shown in Figures 3.1 and 3.2 already.

Simulator. We built a discrete-event simulator for evaluating Lyra at scale using

job traces from production. It simulates the cluster scale, hardware configuration,

and all job events including arrival, completion, scaling, and preemption. Job’s

running time in the simulator is derived from actual training time in the traces.

For elastic jobs, we compute its actual training time based on the traces which is

inversely proportional to its resource allocation as discussed in Section 3.5. We

also consider jobs with imperfect scalability in Section 3.7.2.

Testbed. Our testbed consists of four 8-GPU training servers and four 8-GPU

37

inference servers. Each training server uses Nvidia V100 GPUs with 32GB GPU

memory and has 92 vCPU with 350 GB memory. Each inference server uses

Nvidia T4 GPUs with 16GB GPU memory and has 92 vCPU and 210 GB memory.

The resource management framework is YARN, and training data is stored in

HDFS.

Headroom in inference cluster. To handle unexpected traffic surges in the

inference cluster, we leave a headroom of 2% of the inference cluster capacity.

These machines are never to be loaned. This is chosen based on our empirical

observations. Lyra’s resource orchestrator runs every five minutes with an

overhead of less than one second; and we find that the median inference traffic

burst within five minutes is ∼2% of the inference cluster capacity based on our

GPU utilization trace (Section 3.2.1).

Training job types. Based on the resource requirements, training jobs can be:

• Fungible: 21% jobs can be executed on different GPU types in different runs,

i.e. ideal for capacity loaning.

• Elastic: Jobs can take a variable number of workers that can be adjusted

on-the-fly. They are ideal for elastic scaling.

• Heterogeneous: Jobs can run on different GPU types at runtime.

Scenarios. We consider various scenarios with different degrees of support for

elastic scaling and heterogeneous training, both of which are not widely used

today.

• Basic: Here fungible jobs are used for capacity loaning (21% of total training

load), and elastic jobs are used for elastic scaling (∼5% of all jobs accounting

for 36% of total training resources). No heterogeneous training. This

corresponds to the status quo in our environment (recall Section 3.2.1) and

is the default scenario.

38

• Advanced: On top of Basic, 10% of jobs can use heterogeneous GPUs with

non-ideal performance. The jobs are randomly selected and distributed

evenly across 15 days. Specifically, heterogeneous training jobs only achieve

at most 70% of the ideal results. We experimentally confirm such a perfor-

mance gap which has also been reported by prior work [109, 18].

• Heterogeneous: Different from the Advanced scenario, we disable the 21%

fungible training load and consider the 10% heterogeneous training non-

ideal performance solely.

• Ideal: All jobs support scaling and heterogeneous training with ideal per-

formance. For jobs without a pre-defined scaling range, we consider its

requested demand to be the base demand, and its scaling range is twice

that.

Schemes compared. We compare Lyra to the following schemes that represent

the state-of-the-art and/or the most common solutions to each sub-problem of

Lyra.

We first compare capacity loaning to a simple opportunistic scheme:

• Opportunistic Scheduling: We disable capacity loaning, and queue the 21%

fungible training jobs to the inference cluster with a lower priority than

inference jobs, so they can opportunistically use the idle servers.

We also consider two basic strategies for server reclaiming:

• Random: On-loan servers are randomly selected.

• Smallest (Job) Count First (SCF): The top-k servers that host the smallest

number of jobs are chosen.

We consider several solutions to elastic scheduling. Some are slightly modified

to conform with our setup for elastic jobs.

39

• Gandiva [158]: Elastic scaling is also mentioned in Gandiva. It exploits

elasticity by scaling out jobs to utilize the remaining resources on servers

whenever they are under-utilized. We consider under-utilization to be the

period when there are available resources but no pending jobs.

• AFS [59]: Starting from one GPU per job, it iteratively adds one more GPU

to the job with the largest marginal throughput gain. We implement AFS

by allocating base demand to each job first and allocating one more worker

to the job with the largest throughput gain per GPU.

• Pollux [120]: Pollux computes the goodput of training jobs and applies

genetic algorithms to find the resource allocation. It also adjusts batch size

to maximize goodput and learning rate based on Adascale [67]. We adopt

the model distribution listed by Pollux to capture the model goodput.

We notice that Pollux’s idea of tuning the hyperparameters according to

allocated resources is orthogonal to job scheduling. To compare with Pollux

fairly, we integrate this idea into Lyra in Section 3.7.4:

• Lyra+TunedJobs: Use Lyra’s job scheduler and adapt Pollux’s job agent

for job-level hyperparameter-tuning within the scaling range. Job agent

adjusts model batch size and learning rate whenever job resource allocation

changes.

Lastly, our baseline scheme is:

• Baseline: A FIFO cluster scheduler with no capacity loaning or elastic

scaling.

Metrics. We consider queuing time and JCT to evaluate Lyra. We report Lyra’s

performance improvements using the following method:

Reduction =
Duration of a scheme compared

Duration of Lyra

40

Both the average queuing time and the average JCT are the arithmetic mean.

3.7.2 Overall Performance in Simulation

We evaluate Lyra thoroughly with large-scale simulation. We provide its over-

all performance here. Analyses of its individual components are presented

in Section 3.7.3 and Section 3.7.4.

Simulator calibration and fidelity. To first establish its fidelity, we evaluate our

simulator against the prototype system in a testbed with a small trace.

We calibrate our simulator by comparing the scheduling logs between the

testbed and the simulator. We carefully build several tiny training job traces

(20 minutes – 2 hours) to cover all possible job and resource allocation status.

We run the traces on the testbed and record the timestamp of every activity

(e.g. job launching, start and end of training, scheduling decision). The same

traces are replayed on the simulator. We compare the timestamp and decision

of each activity, and find the first wrong decision or the first activity with a

larger-than-two-seconds time difference. We resolve the time difference and

replay the trace repeatedly until all activities on the simulator match with the

testbed records.

We add a fixed overhead according to our testbed experiments (Section 3.7.5)

whenever a job is preempted in simulation. The simulation results are similar to

testbed results, with a difference of 6.2% and 3.4% in average and 95%ile JCT,

and 3.5% and 4.4% in average and 95%ile queuing time. The small difference

mainly stems from the overhead of placing and removing workers and moving

resources between clusters which the simulator does not capture.

Cluster and workload. We use the full 15-day trace and the same cluster

configuration as our production clusters.

Queuing time, JCT, and cluster usage. Table 3.5 records the performance of Lyra

in different scenarios. Overall, queuing time and JCT are improved by 1.53x and

41

Scenario Scheme
Queuing Time (s) JCT (s) GPU Usage Preemption

Mean Median 95%ile Mean Median 95%ile Training Overall 1 Ratio 2

1 — Baseline 3 3072 55 8357 16610 791 82933 0.72 0.52 0

2 Basic

Lyra

2010 26 3358 11236 568 56477 0.86 0.65 12.24%

3 Advanced 1835 24 3238 10434 525 56553 0.86 0.68 7.35%

4 Heterogeneous 1944 27 3574 12113 604 57392 0.78 0.64 11.23%

5 Ideal 1157 22 3204 8891 422 41146 0.93 0.72 5.72%

6
Capacity Loaning
(Basic)

Opportunity 2788 22 5256 14828 744 67843 0.74 0.63 19.35%

7 Random 2901 23 5478 14678 731 62923 0.76 0.64 20.89%

8 SCF 2783 24 4994 14923 695 62456 0.76 0.64 17.48%

9 Lyra 2212 23 3427 12947 662 57987 0.76 0.65 14.94%

10

Elastic Scaling
(Basic)

Gandiva 3035 49 6632 15912 755 80567 0.79 NA NA

11 AFS 2284 47 3488 15045 686 60883 0.95 NA NA

12 Pollux 2791 58 5883 14534 721 72123 0.93 NA NA

13 Lyra 2275 47 3475 12048 602 57597 0.92 NA NA

14 Lyra+TunedJobs 2054 43 2749 10229 564 52458 0.91 NA NA

(1) Overall GPU usage denotes the GPU utilization in both training and inference cluster. It is applied when the
training cluster size is changing in capacity loaning.
(2) Preemption ratio is the ratio between the total number of preemptions and the total number of job submissions.
(3) No capacity loaning or elastic scaling is considered. We use the FIFO job scheduler in Baseline Section 3.7.1.

Table 3.5: Simulation results in different scenarios using different schemes.

1.48x when compared to Baseline in the Basic scenario (row 2). The overall cluster

usage is improved by 25%. In the Advanced case with non-ideal heterogeneous

training, queuing time and JCT are reduced by 1.67x and 1.59x over Baseline

and by 1.10x and 1.08x over Lyra itself in the Basic scenario. In the Ideal case

which represents the performance upper bound, the average combined usage

of inference and training clusters is improved by 38.5% (to 72%) over Baseline.

Compared to the Basic case, average queuing time and JCT in the Ideal case

show additional 27% and 14% improvements by virtue of complete job flexibility

and perfect performance scalability.

Since the training cluster’s resource is dynamically changing, we depict the

hourly combined cluster usage for 48 hours in Figure 3.7. The Baseline usage

curve shows a clear diurnal pattern mostly attributable to the inference cluster.

When capacity loaning is enabled, Lyra improves the usage and flattens the

42

curve; the most significant improvement is a 14% usage increase between Basic

and Baseline. Notice the combined usage does not reach 100% since the inference

cluster needs a 2% headroom to gracefully handle the latency SLA.

Figure 3.7: Overall resource usage rate of Baseline and
Lyra in Basic and Ideal scenario.

Figure 3.8: Average queuing
time and JCT against Baseline
in imperfect scalability.

How scaling helps capacity loaning? We now seek to understand how our

two key ideas interact and complement each. Scaling helps capacity loaning,

especially in reducing preemptions in reclaiming the on-loan servers. With elastic

scaling disabled, Table 3.5 shows that preemption as percentage of running jobs

increases from 12.24% (row 2) to 14.94% (row 9). We also observe that on

average the flexible server group (hosting elastic workers only) alone satisfies

53.5% of reclaiming demand each time. With more aggressive flexibility (row 5),

preemption is reduced to 5.72% and satisfies 83.5% of reclaiming demand each

time.

In Section 3.5.3, we discussed how Lyra places elastic and inelastic jobs

with on-loan servers in the cluster. In Table 3.6, we compare the placement

performance in different scenarios without special treatment to elastic jobs, i.e.

instead of grouping their flexible demand and placing them to on-loan servers

as much as possible, the scheduler places them to training servers first just like

inelastic jobs. The most significant difference is in preemption ratio. Without

grouping the flexible demand, preemption ratio increases by up to 91% in Ideal

(compared to Table 3.5 row 5). Preemptions also incur degradation to job runtime;

43

for example average queuing time and JCT in the Basic case increase by up to

11.1% and 15.2%.

Scenario Avg. Queuing Time (s) Avg. JCT (s) Preemption Ratio

Basic 2231 13872 13.22%
Advanced 1944 12474 10.04%
Ideal 1273 9982 10.93%

Table 3.6: Performance without special placement of elastic jobs. Lyra naively places
jobs based on the BFD heuristic.

Impact of imperfect scaling. Thus far we have assumed linear scalability of

elastic jobs based on our empirical analysis in Section 3.2.2. Here we also evaluate

Lyra when elastic jobs scale non-linearly with throughput loss. When one more

worker is added to a job, we add a 20% loss to the throughput brought by this

worker. Figure 3.8 presents Lyra’s gains over Baseline with non-linear scaling. In

Basic, average queuing time and JCT are 3.03% and 5.82% higher than those with

linear scalability (Table 3.5 row 2). The degradation is mild because most training

jobs are inelastic in Basic scenario and Lyra always satisfies their base demands.

In Ideal, JCT is inflated by 10.54% to 9,828 seconds (compared to Table 3.5 row 5)

due to the increase in job running time; the gain over Baseline is ∼1.7x.

Heterogeneous training. In Table 3.5, Lyra in the Heterogeneous scenario

shows 1.58x and 1.37x reduction over Baseline in average queuing time and JCT.

However, the preemption ratio is only 1% lower than Basic compared to 4.89%

reduction in Advanced. We also manually enable heterogeneous training for

more jobs in Figure 3.9. Intuitively, more jobs capable of heterogeneous training

could bring more benefits to cluster efficiency. Job resource allocation could

be more flexible. However, heterogeneous training leads to throughput loss

and uses more resources to maintain the training progress than homogeneous

training. Moreover, the availability of inference servers is subject to inference

cluster traffic, and jobs may have to wait when few resources are available.

44

Therefore, the reduction of average queuing time approaches its asymptotic limit

when 50% or more jobs support heterogeneous training.

Figure 3.9: Average queuing time and JCT against Baseline in Heterogeneous.

Reproducibility of results. We also validate the reproducibility of the results.

Here we compose ten 10-day training job traces based on the full 15-day trace

in Section 3.7.1 using the bootstrapping technique. The cluster size remains the

same. Figure 3.10 shows the results. Lyra’s gains in queuing time and JCT are

1.45x and 1.44x in Basic, and 2.47x and 1.78x in Ideal. Lyra’s performance is

better when the training cluster has a long job queue. On weekends, training

cluster is less busy. We notice that the gain in traces No.0 and No.4 is lower

(10%) than others because two weekends are selected. On weekends, training

cluster is less busy. Lyra’s performance is better when the training cluster is busy

and has a long job queue. Excluding these two traces, Lyra’s improvement is

statistically significant and consistent with results in Table 3.5 (rows 2 and 5).

The average JCT improvement in Basic and Ideal shows a less than 4% gap with

the performance improvement on the complete trace.

3.7.3 Deep-Dive: Capacity Loaning

We now dive into the two components of Lyra. We first focus on capacity loaning,

aiming to understand its sources of gain and how our knapsack-based reclaiming

45

Figure 3.10: Average queuing time and JCT against the respective Baseline in Basic and
Ideal for ten 10-day traces.

heuristic compares to other schemes. The results here are obtained without

elastic scaling.

Scheme
Queuing Time (s) JCT (s)

Mean Median 95%ile Mean Median 95%ile

Baseline 4573 1283 23351 11547 2122 60170
Lyra 1119 274 7256 6887 1373 35776

Table 3.7: Queuing time and JCT of jobs running on on-loan servers.

Sources of gain. Table 3.5 (row 9) shows that loaning alone reduces average

queuing time and JCT by 1.39x and 1.31x over Baseline. Loaning also improves

the combined cluster usage from 52% to 66%. The JCT improvement mainly

comes from the reduction in queuing time as jobs now can run on the loaned

resources instead of waiting in the queue. Table 3.7 shows the statistics of

queuing time and JCT for jobs running on the on-loan servers. The median and

95%ile queuing time is improved by 4.68x and 3.22x, respectively, compared to

Baseline. The resource usage rate of on-loan servers throughout the experiment is

consistently above 92% as depicted in Figure 3.11, which proves the effectiveness

of resource loaning. We observe that JCT improvement of capacity loaning is

not as significant as elastic scaling (Table 3.5 row 13). This is because (1) loaning

46

Figure 3.11: The daily average resource usage of on-loan servers (monitored every 5
minutes).

depends on idle inference resources and its gain is less stable, and (2) compared

to scaling, loaning itself does not affect job running time.

Opportunistic scheduling. We then discuss why capacity loaning is more

efficient than simple opportunistic scheduling. Table 3.5 row 6 shows the perfor-

mance when the fungible jobs are scheduled opportunistically in the inference

cluster. This does improve average queuing time and JCT over Baseline, but

suffers 26.0% and 14.5% loss compared to Lyra (row 9). This is mainly because

when fungible jobs are blindly put to inference servers, they suffer lower resource

efficiency.

Reclaiming heuristic. We compare our reclaiming heuristic to Random and

SCF. We use two metrics, the percentage of preempted jobs among running

jobs, and collateral damage as the fraction of GPUs vacated in excess of the

reclaiming demand. It is clear from Figure 3.12 Lyra outperforms others with

and without elastic scaling. Without scaling, Lyra’s knapsack-based heuristic

reduces preemption and collateral damage by 1.51x, 1.68x and 1.36x, 1.59x over

SCF and Random, respectively. With scaling, Lyra scales elastic jobs on the

flexible server group first which further widens the gap. From Table 3.5, it is

clear that reducing preemptions is beneficial: Lyra reduces the average queuing

time and JCT by 1.26x, 1.15x and 1.31x, 1.13x over SCF and Random. We also

47

Figure 3.12: Preemption ratio and average collateral damage (defined in Section 3.7.3,
Reclaiming heuristic).

run an exhaustive search to find the optimal reclaiming solution. Lyra results

in the same number of preemptions as optimal when reclaiming fewer than 60

servers, and incurs 19% more preemptions otherwise. We compare the servers

reclaimed by Lyra with the optimal solution. An average 84% of servers in the

optimal solution are picked by Lyra’s reclaiming decision. The average running

time of the optimal solution, however, is 420k times that of Lyra.

Use of checkpointing. Checkpointing can effectively help a preempted job

recover the training progress and resume from where they are interrupted. Since

the scheduler cannot determine if a job has proper checkpointing or not, in

our default setup we have made a conservative assumption that no jobs have

checkpointing. Here we gradually increase the fraction of jobs with checkpointing

enabled and present its impact on performance against the default case without

checkpointing (Table 3.5 row 9). Figure 3.13 shows that prevalent checkpointing

consistently improves Lyra: for example the preemption ratio is reduced to 0.26%

and average JCT is reduced by 1.24x when 80% jobs have checkpoints.

48

Figure 3.13: Average queuing time and JCT when jobs with checkpointing increase in
Ideal.

3.7.4 Deep-Dive: Job Scheduling

We evaluate job scheduling in more detail here. The results are obtained without

capacity loaning in Basic scenario.

Scheme
%ile Queuing Time (s) %ile JCT (s)

50 75 95 99 50 75 95 99

Baseline 55 1892 8357 14323 791 29163 82933 376513
Gandiva 49 1764 6632 11806 755 27244 80567 323626
AFS 58 1297 5883 11124 721 12304 72123 323513
Pollux 47 772 3488 9031 686 20143 60883 247435
Lyra 47 697 3475 8731 602 12072 57597 223815
Lyra+TunedJobs 43 566 2749 7112 564 9293 52458 194391

Table 3.8: 50%ile, 75%ile, 95%ile and 99%ile of queuing time and JCT (Basic).

Sources of gain. Table 3.8 shows the queuing time and JCT distributions of all

schemes. Our key insight in solving the scheduling problem is to prioritize the

inelastic workload (Section 3.5.2). Gandiva does not improve Baseline much due

to its opportunistic nature: it only scales jobs in low-utilization periods. Both

Lyra and AFS allocate the minimum demand to each job initially. From Table 3.8,

49

they have similar median queuing time. Though Pollux considers job’s minimum

demand and favors those with large goodput, it does not explicitly launch as

many jobs as possible, thus incurring longer queuing time. Lyra outperforms

Pollux by 1.23x and 1.69x in median and 95%ile queuing time.

Turning to JCT, we find from Table 3.8 that Pollux tends to prolong the large-

and-long jobs by shrinking their resources towards the end of training to yield for

newly-started jobs that make rapid progress with the same resources. Moreover,

Pollux’s performance heavily hinges upon the problem scale and the number

of iterations allowed for its genetic algorithm. In a large cluster of over 3,500

GPUs with heavy workload, the preset 100 iterations are not sufficient to get an

efficient allocation result. To keep the scheduling overhead acceptable, we set the

number of iterations to 250 and Lyra still has 1.20x and 1.25x improvements in

median and 95%ile JCT. AFS assumes unbounded elasticity and shows a higher

resource usage. However, unlimited elasticity and greedy allocation implicitly

favor jobs with better throughput at the cost of others. Its average JCT is 1.2x that

of Lyra which balances the resources each job gets by making global allocation

and considering limited elasticity.

Sensitivity analysis: Proportion of elastic jobs. We wish to analyze whether

Lyra is sensitive to the proportion of elastic jobs in the mix. Figure 3.14 shows

the performance comparison when elastic jobs grow from 20% to 100% of the

population. All schemes show improvements as a result. Lyra delivers the largest

gains in both queuing time and JCT compared to other schemes with more elastic

jobs, demonstrating that its scheduler most efficiently exploits job elasticity. AFS

also has good gains in queuing time as it initially allocates minimum demand to

each job. Its JCT gains, however, are much lower due to the greedy heuristic in

ordering the jobs for allocation. Pollux’s queuing time performance is poor as

queuing time is not considered in its design. Its JCTs are much better because it

auto-tunes the hyperparameters for the best performance.

50

Figure 3.14: Queuing time reduction of
Baseline as elastic jobs increase.

Figure 3.15: JCT reduction of Baseline as
elastic jobs increase.

Sensitivity analysis: Error in running time estimation. Our second sensitivity

analysis concerns the running time prediction which Lyra’s scheduler relies

on. Table 3.9 shows the performance under different estimation accuracy. Lyra

improves queuing delay by 1.76x over Baseline even when there are 60% wrong

predictions (each with at most 25% error). Its gain is consistent with less than

60% wrong predictions, which demonstrates its robustness.

% Wrong Prediction Queuing Time Reduction JCT Reduction

20% 2.21 1.52
40% 2.17 1.49
60% 1.76 1.38

Table 3.9: Queuing time and JCT reduction with incorrect running time estimation.
The fraction of incorrect estimation varies from 0% to 60%. We assume each incorrect
prediction has a random error margin within 25%.

Sensitivity analysis: Imperfect scaling of elastic jobs. In Figure 3.16, we plot

Lyra’s performance with non-linear scalability of training throughput, following

the same setup discussed in Section 3.7.2. The average JCT improves by 1.86x

when all the elastic jobs scale non-linearly. When the fraction of elastic jobs is

less than 50%, non-linear scalability has less than 5% impact on JCT compared to

linear scalability. Yet its impact on JCT grows (up to 9%) as elastic jobs become

the primary workload, because they run slower due to non-linear scalability.

51

Meanwhile, the newly-arrived jobs have to wait longer for running jobs to vacate

the resources, resulting in up to 7% increase in average queuing time.

Figure 3.16: Lyra with non-linear scaling. Dots indicate the results with linear scaling.

Hyperparameter tuning. We study Lyra+TunedJobs now which adapts Pollux’s

job agent to tune jobs’ hyperparameters as explained in Section 3.7.1. In the Basic

scenario, Lyra+TunedJobs (row 14 in Table 3.5) enjoys additional 18% and 13%

gains over Baseline in 95%ile and 99%ile JCT. This gain is more significant when

all the jobs are elastic as seen in Figures 3.14–3.15.

More importantly, Lyra+TunedJobs allows for a fair comparison with Pollux

as both have hyperparameter tuning. It outperforms Pollux by 1.32x and 1.37x

in median and 95%ile JCT in Basic scenario (Table 3.8). Lyra’s gain over Pollux is

larger here which shows that Lyra’s scheduling policy performs better in JCT.

The main reason is that Lyra specifically optimizes JCT while Pollux optimizes

goodput for resource efficiency. Thus JCT for some jobs is affected, especially

near the end of training when the marginal gain of resources becomes smaller

(i.e., goodput is lower) and resource allocation is decreased. Another side-effect

of goodput-based scheduling is back-and-forth scaling as goodput varies as soon

as the hyperparameter or allocation changes. We find the number of scaling

operations in Pollux is 1.76x that of Lyra+TunedJobs in the Ideal scenario, and

many are scaling-out followed immediately by scaling-in in the next interval.

52

3.7.5 Testbed Results

We use our prototype in testbed experiments to schedule jobs and YARN to run,

scale, and preempt them.

Workload. We use a scaled-down version of the traces with 180 training jobs

(10 elastic ones, similar to Basic scenario); jobs with (maximum) demand larger

than 16 GPUs (50% cluster) are excluded. Job submission lasts for 8 hours and

training time varies from 2 minutes to 2 hours. The inference trace is also scaled

down according to the testbed capacity.

JCT and queuing time. Table 3.10 shows the statistics of queuing time and JCT.

Lyra improves average and 95%ile queuing time by 1.38x and 1.36x over Baseline

. In terms of JCT, Lyra improves the median and 95%ile by 19.9% and 11.7%

over Baseline. The gains come from both capacity loaning and elastic scaling:

the orchestrator performed 6 loaning and 8 reclaiming operations involving a

total of 10 servers, and the scheduler issued 73 scaling operations. In capacity

loaning, Lyra outperforms Random and SCF by 19% and 15% in average queuing

time. In elastic scaling, Lyra’s tail queuing time is 10% shorter than AFS. Its JCT

gain is 1.19x over Baseline compared to 1.14x and 1.15x for AFS and Pollux. The

results here show that Lyra is highly effective in reducing queuing time. The JCT

improvements are relatively small due to the inference cluster’s limited resources

compared to job demand. We observe the inference cluster loaned at most three

servers which is equivalent to one training server in computational capability,

while it is common for a job to demand an entire training server in our trace.

Preemption. Figure 3.17 shows the total number of preemptions and the corre-

sponding collateral damage in testbed. Lyra reduces preemption significantly by

over 1.3x compared to Random and SCF reclaiming schemes (row group 2). We

also measure the preemption overhead, including the time to save a checkpoint

to the disk, terminate containers, launch new containers on different servers, and

53

Scenario Scheme
Queuing Time (s) JCT (s) Preemption

Mean Median 95%ile Mean Median 95%ile Ratio

Overall
Baseline 1532 772 1003 4078 2183 3096 0
Lyra 1109 503 738 3335 1747 2731 18%

Capacity
Loaning

Random 1527 658 993 3893 2046 3015 34%
SCF 1473 614 864 3857 1994 3001 30%
Lyra 1230 594 823 3748 1946 2864 22%

Elastic
Scaling

Gandiva 1443 645 1002 3882 2015 2893 NA
AFS 1338 534 882 3521 1836 2803 NA
Pollux 1405 576 937 3552 1934 3004 NA
Lyra 1318 546 798 3413 1791 2794 NA

Table 3.10: Testbed results using different schemes in Basic scenario.

load the checkpoint before training starts. The average overhead is 63 seconds,

which is adopted in our large-scale simulation.

Figure 3.17: Preemption Ratio and average collateral damage comparison in testbed.

3.8 Discussion

Fine-grained resource sharing. Lyra uses physical machines as the basic unit of

loaning and reclaiming. Our intention is to avoid interference between training

and inference. This concern can be alleviated by improvements from the infras-

tructure (e.g. better isolation mechanisms). Then one may consider fine-grained

sharing on the GPU level, which allows more sharing opportunities but also

demands a more careful scheduling design because of the larger problem scale.

54

Strong and weak scaling. Strong and weak scaling is paramount for optimizing

performance in distributed DNN. Strong scaling pertains to the ability of a

distributed system to train a fixed global batch size with less time as more

computation resources are added to the system. On the other hand, weak

scaling addresses the system’s capability to maintain a constant workload per

computation unit while scaling both the global batch size and the number

of resources proportionally. Effective utilization of strong scaling allows for

faster training of DNN models for a given dataset size, while proficient weak

scaling facilitates handling increasingly large datasets or more complex models

with consistent performance. These concepts serve as fundamental pillars in

optimizing the efficiency and scalability of distributed DNN training frameworks,

essential for pushing the boundaries of machine learning capabilities in today’s

data-intensive applications.

Performance under scaling. We assume the elastic job’s training throughput

is linear in the allocated resources within the scaling range. In practice train-

ing throughput is likely to scale sub-linearly due to factors such as network

communication and synchronization overhead. An improved approach may

be to empirically profile the throughput and running time of the workloads

as a non-linear function of resources. Lyra’s scheduling algorithm still works

with non-linear scaling which does not change the combinatorial nature of the

problem; we provided simulation results in Section 3.7.2.

Heterogeneous GPU training. Training with heterogeneous GPUs is an active

area of research and current mechanisms are primitive [18]. We observe that

though adjusting the batch size can roughly synchronize the workers, it may

prolong the training convergence in some cases. More effort is needed to improve

training efficiency with heterogeneous GPUs and to automate hyperparameter

adjustment [17, 100].

55

3.9 Related Work

GPU cluster schedulers. We have discussed Pollux, AFS, and Gandiva exten-

sively in Section 3.2.3 and Section 3.7.2. Tiresias [46] applies least-attained-service

to minimize average JCT. It does not consider elastic scaling. Optimus [111]

predicts the training time by modeling the loss convergence speed and designs a

heuristic to minimize average JCT. Predicting a DNN’s convergence, however, is

challenging as discussed in [51]. PAI [154] introduces a scheduler which reserves

high-end GPUs for high-GPU tasks and packs low-GPU tasks on less advanced

GPUs. These works all schedule jobs in a cluster with a fixed capacity.

Systems support for elastic scaling. There is emerging interest in exploiting

resource elasticity in distributed training. Systems such as [74, 53, 117] extend

various ML frameworks to support elasticity. [106] proposes an auto-scaling

policy by considering both cost and scaling efficiency. AntMan [159] provides a

scaling mechanism to micromanage computation and GPU memory during train-

ing, and a job scheduler for performance guarantees. They are complementary

to Lyra as they provide practical solutions for scaling DNN jobs.

Dynamic resource allocation. Graphene [45] and PriorityMeister [176] dynam-

ically adjust resource allocation to fit job’s time-varying demand and utilize

resources more efficiently. In Lyra, we consider scaling for jobs that can work

with a range of resources, which are taken as constraints to the scheduling

problem. Lyra schedules jobs with an extra dimension of how much resource

should a job get and its impact on cluster performance.

56

Chapter 4

Lina: Accelerating Distributed MoE

Training and Inference

4.1 Introduction

Recent advances in deep learning have shown that a model’s quality typically

improves with more parameters [15, 32, 145, 37, 69]. Many new frontiers

in Computer Vision (CV) and Natural Language Processing (NLP) have been

explored using large dense models [130, 34, 115]. While effective in terms of

model quality, the computation cost of model training and serving is extremely

high. ChatGPT [16], an impressive chatbot released by OpenAI, is estimated to

spend 3 million dollars per month to serve user requests. Wider adoption and

development of these models are impeded by the exorbitant compute cost.

Following the basic idea of curbing the computation cost of massive models,

sparsely activated models have recently been introduced [12, 130, 37, 84]. The

Mixture-of-Experts (MoE) structure is now one of the most popular ways to

implement sparse activation [130, 12, 13, 178]. For each input, instead of using all

parameters, an MoE model selects just a few of them, i.e. experts, for processing.

This leads to sub-linear scaling of FLOPs needed with model size. Recent

57

literature [6, 177, 34, 115, 62, 73] has proven the potential of MoE models. For

instance, Google develops a family of language models named GLaM using

MoE [34]. Compared to GPT-3 with 175 billion parameters, the largest GLaM

has 1.2 trillion parameters while only consuming 1/3 of the energy for training.

Meanwhile, GLaM still achieves better zero-shot and one-shot performance

than GPT-3. Microsoft reports that their MoE-based language models achieve

a 5x training cost reduction compared to a dense model with the same model

quality [115].

Given the uptake of MoE, there have been several systems for efficient

MoE training and inference, including Google’s Mesh TensorFlow [131], Meta’s

FairScale [9], Microsoft’s DeepSpeed [30] and Tutel [144], etc. They provide APIs

for users to replace the conventional dense layers with MoE layers with minimal

code changes. They adopt both data parallelism and expert parallelism to accel-

erate the training and inference. That is, each device (e.g. GPU) is assigned with

a unique expert, and uses all-to-all to receive inputs from other devices and then

sends the gradients back to them accordingly. During training, allreduce is then

used to aggregate non-expert gradients in the backward pass.

We focus on the efficiency of distributed MoE training and inference in

this work. As some [124, 79, 50] has shown, the all-to-all operation is the

main bottleneck. All-to-all blocks the subsequent computation operations and

needs to be invoked two times in the forward pass and another two in the

backward pass for each MoE layer. Interestingly, the main causes for all-to-all

being the bottleneck are different in training and inference. In training, all-to-all

and allreduce often contend for network bandwidth when they overlap in the

backward pass, leading to a prolonged blocking period to the computation.

Inference, on the other hand, presents a highly-skewed expert popularity driven

by real-world requests. Devices with popular experts have to handle much more

data than others. Not only does it delay the launch of all-to-all, but it also causes

58

imbalanced transfer size and bandwidth utilization across the devices, both of

which are detrimental.

We are thus motivated to systematically tackle the all-to-all bottleneck. Our

solution is Lina, a system that accelerates both MoE training and inference.

In training, we prioritize all-to-all over allreduce in order to improve its

bandwidth. Existing MoE systems launch separate CUDA streams for the

expert-parallel and data-parallel process groups which correspond to all-to-all

for expert and allreduce for non-expert parameters, respectively. As there is no

coordination between these streams, all-to-all and allreduce can overlap and fair-

share the network bandwidth. Unlike allreduce, all-to-all is blocking and cannot

be made parallel with the computation process. Thus, prioritizing all-to-all in the

backward pass and avoid concurrent allreduce is crucial to reducing the blocking

period.

To efficiently prioritize all-to-all, we adopt tensor partitioning which breaks

down a tensor into smaller chunks, each of which forms a micro-op. With micro-

ops, simple priority scheduling can be applied to guarantee full bandwidth for

all-to-all while allowing allreduce micro-ops to make progress when all-to-all is

not present. In addition, micro-ops allow the expert computation to be pipelined

with all-to-all.

In inference, we dynamically schedule the resources for each expert in order to

balance the workload of each device, thereby alleviating the imbalanced all-to-all

transfer size and bandwidth. Intuitively popular experts should be given more

resources while the rest may be served with less resources. The key challenge here

is to efficiently and accurately obtain the expert popularity before the selection is

actually done by the gating network, for every batch of input at each MoE layer,

so scheduling benefit can be maximized with minimal overheads. Fortunately,

we find the experts selected by each token across the layers demonstrate clear

patterns, which allow us to estimate the expert distribution of the upcoming

59

layer based on the past selection results from the preceding layers. We adopt a

two-phase scheduling approach that fine-tunes the estimation based allocation

only when the actual expert popularity deviates too far.

We build Lina based on DeepSpeed MoE [30] and PyTorch, and evaluate it

on a cluster with up to 16 Ampere A100 GPUs with 40GB memory and 100Gbps

InfiniBand. Results show that Lina accelerates all-to-all by at least 2.21x, and

achieves on average 1.57x speedup in overall training step time compared to

state-of-the-art system DeepSpeed. The median and 95%ile inference time is

reduced by 1.45x and 1.63x.

Our contributions can be summarized as follows:

• We present an in-depth empirical analysis of distributed MoE to show the

main causes for all-to-all to be the performance bottleneck in training and

inference.

• We propose to prioritize all-to-all over allreduce in order to improve its

bandwidth and reduce its blocking period in distributed training. Lina’s

scheduler incorporates tensor partitioning and pipelining to perform micro-

op scheduling.

• We examine the pattern in expert selection of MoE layer and propose to

estimate the expert popularity to conduct resource scheduling in advance

during inference. Lina adopts a two-phase scheduling scheme to minimize

the overhead.

• We implement a concrete prototype system and conduct comprehensive

testbed experiments to demonstrate the benefits of our design in a realistic

GPU cluster setting.

60

4.2 Background and Motivation

We start with an introduction on MoE and a widely-adopted distributed system

for MoE model in Section 4.2.1. Then, we motivate our idea by analyzing the

performance bottleneck (i.e. all-to-all) in distributed MoE training and inference

in Section 4.2.2.

4.2.1 A Primer on MoE

Mixture-of-Experts (MoE) has been adapted to different types of DNN models ,

and exhibits great potential in improving the performance of language models

in particular. GShard [79] and Switch Transformer [37] are two seminal works

on scaling Transformer-based language models with MoE layers. We focus on

MoE in Transformer-based models in this work.

Transformer-based models normally use an MoE layer to replace the feed-

forward network (FFN) layer. An MoE layer consists of multiple FFNs each

serving as an expert, and a gating network (Figure 4.1a). Every expert is a

fully-connected two-layer network using ReLU activation but with different

parameters. The gating network takes in the embedding vector of each token

and multiplies them with its trainable matrix. Based on the results, it dispatches

the token to a small number of experts (usually one or two). The final output of

the MoE layer is the weighted sum of outputs from the selected expert(s). The

sparsity nature of MoE improves the model scaling in size without increasing

the training cost and naturally leads to a dynamically-changing model graph.

Load balancing loss. In MoE training, an auxiliary loss is introduced to evaluate

the token distribution among the experts [37]. The objective is to achieve a

uniform distribution of tokens across the experts, thereby preventing an excessive

concentration of tokens in a single expert. By minimizing this loss term, we

encourage but do not enforce the gating network to produce a perfectly balanced

61

token distribution.

The standard practice is to calculate the auxiliary loss of each MoE layer and

sum them with the training loss using an appropriate weight. Previous research

has demonstrated the effectiveness of this approach [19, 84, 133]. However, it

should be noted that achieving a perfectly balanced distribution, where the

auxiliary loss converges to zero, is challenging [174, 22]. During MoE inference,

the trained gating network is utilized to dispatch tokens to the experts based on

their respective embeddings. This process is solely driven by the characteristics

of the token embeddings.

Self Attention

Add & Norm

Gate

+

Add & Norm

FFN1 FFN2 FFN3

MoE

FFN0

(a) There are four experts and the gate
selects two experts.

Self Attention

Add & Norm

Gate

Add & Norm

FFNN-1

Self Attention

Add & Norm

Gate

Add & Norm

FFN0

All-to-all

...

Device
0...N-1

All-to-all

(b) Distributed MoE. Data parallelism and expert
parallelism are used.

Figure 4.1: MoE layer in Transformer-based models.

Hybrid parallelism in distributed MoE. Training and serving MoE models in a

distributed manner are necessary due to the tremendous compute requirement of

large-scale language models [11]. For efficiency, both data parallelism and MoE-

specific expert parallelism (as a form of model parallelism) are applied [79, 37].

Existing MoE systems [79, 37, 131, 9, 30, 144] allocate one unique compute device

(e.g., GPU) for each expert in expert parallelism. An all-to-all communication is

then needed to send tokens to their experts selected by the gating network, and

another all-to-all is needed to send tokens back to the device they belong to in

data parallelism to finish the rest of the forward pass as shown in Figure 4.1b.

62

4.2.2 Bottleneck Analysis

Much prior work has identified that the introduction of all-to-all in MoE causes

performance inefficiency in Transformer-based models [144, 124, 177]. We extract

the completion time of all-to-all operations in both training and inference in

our GPU cluster as shown in Table 4.1. All our experiments in this section use

the same testbed and settings. Overall, all-to-all takes an average of 34.1% — a

significant fraction of the step time. Interestingly, though the bottleneck brought

by all-to-all is universal in both MoE training and inference, the causes differ.

In the following, we motivate our work by analyzing how all-to-all affects the

efficiency of training and inference, respectively.

Experts Model Training (ms) Inference (ms)

GPUs #Layers & Params All-to-all Ratio All-to-all Ratio

12L + 117M 259 36.7% 73 27.4%
4 24L + 233M 589 35.4% 103 26.2%

36L + 349M 979 38.2% 153 28.3%

12L + 419M 333 39.5% 102 32.5%
16 24L + 838M 715 37.6% 177 31.7%

36L + 1.2B 1145 36.8% 243 27.4%

Table 4.1: The completion time of all-to-all and its ratio in training and inference task
of Transformer-XL [29] in different number of experts per layer. Training and inference
have the same batch size here. Each FFN layer is replaced with MoE and the number of
experts is equal to the number of GPUs similar to the common practice [37]. A100 GPUs
with 40GB memory and 100Gb/s InfiniBand are used. We use the MoE implementation
in DeepSpeed.

Synchronous all-to-all with large data transfer. The common characteristic

shared by MoE training and inference is all-to-all’s large data transfer. All-to-all

is an irreplaceable synchronous component to handle the data exchange among

devices in MoE layer. Each MoE layer has two all-to-all operations to send the

tokens to the experts and then restore the position of tokens, as introduced

63

in Section 4.2.1. The data transfers in the two all-to-all operations have the same

size because the expert’s FFN architecture ensures that its input data size is

the same as the output data size. Figure 4.2 shows an empirical timeline view

of the forward pass of MoE model in our cluster. All-to-all takes 74.9% of the

end-to-end running time of one MoE layer. Expert FFN computation and the

combine operation follow when all-to-all operation completes. MoE training

and inference suffer from such inefficiency consistently. GPU is mostly idle

during this period: We use the PyTorch Profiler [119] to profile the GPU activities

for 20 steps in each experiment in Table 4.1, and find that the average GPU

SM efficiency during all-to-all is 3.7%. Besides, the data transfer size grows

linearly with the number of experts. Figure 4.3 presents the empirical evidence

of all-to-all’s transfer size as the number of experts grows from 2 to 16 (128).

With the increasing number of experts, the time taken by all-to-all grows from

33.4% to 44.5% of the step time.

Stream a
Stream b All-to-all

Forward Pass

0 3.1 10.7 12.1 18.7
ms

20.3
All-to-all

Gate FFN Combine

Figure 4.2: Timeline of forward pass an MoE layer. We simplify the presentation by
bundling GPU kernels here: The computation kernels are grouped by their roles in the
MoE layer into Gate, FFN and Combine. The Combine operation involves reshaping the
tensors and computing the weighted output. The timeline is taken from a sample run of
the 419M-parameter model in Table 4.1.

Problem in training: Prolonged all-to-all with allreduce. The unique challenge

in MoE training is that applying the hybrid parallelism creates a particularly

severe impact to all-to-all in backward pass. Non-MoE layers in data parallelism

need allreduce to aggregate the gradients, while expert parallelism requires all-to-

all to exchange tokens to compute expert gradients. Since the two operations

control their own process groups independently, two dedicated CUDA streams

64

2 4 8 16
Experts

20

30

40

50
R

at
io

 (%
)

24
26
28
210
212

Si
ze

 (M
B

)

Ratio
Transfer Size

Figure 4.3: The proportion of all-to-
all’s completion time over training step
time when the number of experts grows.
Dashed line plots the data size in one all-
to-all operation.

1 2 3 4
Slowdown Factor

0.00
0.25
0.50
0.75
1.00

Pe
rc

en
t

Median
Mean

Figure 4.4: CDF of how much all-to-all is
prolonged when it overlaps with allreduce
operation. We mark the median and aver-
age slowdown factors.

are launched concurrently. This is demonstrated in Figure 4.5 with the timeline

of backward pass in a sample run of MoE training. As the two operations overlap,

they contend for the network bandwidth and their completion times are severely

prolonged. To make matters worse, we find that the slowdown factor varies

significantly. We collect the completion times of 1,500 all-to-all operations in

backward pass on our testbed and plot the CDF of the slowdown factor they

endure with allreduce in Figure 4.4. Observe that the median slowdown is over

1.83x and the worst is 4.14x.

Stream c

Stream a
Stream b

Backward Pass

ms
All-to-all

FFN

0
Allreduce

All-to-all
GateCombine

1.6 8.6 9.2 13.6 15.0 22.6 26.1

Figure 4.5: Timeline of backward propagating an MoE layer under hybrid parallelism.
The first all-to-all is prolonged by the allreduce operation in Stream b. The shadowed
part is its original completion time.

Problem in inference: Skewed expert popularity. The main cause of all-to-all

being the bottleneck in MoE inference is the skewed expert popularity. The

token-to-expert distribution in inference is purely workload-driven, and we

65

empirically find that the expert popularity is highly skewed in sharp contrast to

training. We sample the expert popularity of the same MoE model in training

and inference in Figure 4.6. In training, the distribution is nearly the same across

all experts after hundreds of steps due to the use of load balancing loss. In

inference, however, the most popular expert receives 4.02x and 5.56x tokens of

the least popular ones in 4-expert and 16-expert inference tasks. With the same

network and computation capacity, devices hosting popular experts take much

longer to perform expert computation. In this experiment, the maximum idle

time of the least popular expert is 29.4% of the inference time of that batch. Thus,

within one batch, tokens to the less occupied experts have to wait for others

to complete on the more popular experts, degrading the all-to-all performance

significantly. Further, under uniform expert-device allocation, devices hosting

popular experts have more tokens using their links for all-to-all, while the links

of other devices are underutilized.

0 1 2 3
Expert

0.0
0.1
0.2
0.3
0.4
0.5

Po
pu
la
rit
y

(a) 4-expert MoE.

0 5 10 15
Expert

0.00
0.05
0.10
0.15
0.20

Po
pu
la
rit
y

(b) 16-expert MoE.

Figure 4.6: Sampled expert popularity. The distribution is computed as the ratio between
the number of tokens received by the expert and total number of tokens in one batch.
We use the Enwik8 test set [36] for evaluation.

66

4.3 Design Overview

Lina is designed to accelerate all-to-all in distributed MoE. It attacks both the

bandwidth contention with allreduce in training, as well as the straggler with

unbalanced all-to-all bandwidth in inference. We focus specifically on MoE

implementations that leverage both data and expert parallelism.

MoE training. We aim to improve the bandwidth of all-to-all in order to reduce

the blocking period of the computation operations. Our key idea here is to

prioritize all-to-all so it does not fair-share bandwidth with concurrent allreduce

(Section 4.4). This is achieved using tensor-partitioning. We partition all-to-all

and allreduce tensors into small chunks, each of which then forms a micro-op.

Lina schedules an allreduce micro-op only when there is no all-to-all waiting

or ongoing so that all-to-all is guaranteed the full network bandwidth during

its lifetime. Without prior information, tensor-partitioning and micro-ops can

ensure that in most cases all-to-all can launch immediately and allreduce is not

deferred excessively.

MoE inference. We propose to dynamically adjust the device allocation for

experts based on the expert popularity, so that is not all-to-all is not delayed by the

trailing tokens, and its bandwidth utilization across links is balanced (Section 4.5).

We exploit the expert selection pattern across adjacent layers to estimate the

expert popularity. Based upon the estimation, Lina performs scheduling at each

layer to allocates proportionally more devices for popular experts and pack

unpopular ones to fewer devices, and coordinate all-to-all correspondingly.

4.4 Prioritizing All-to-All Training

We have shown that all-to-all is slowed down significantly if it overlaps with

allreduce in the backward pass in MoE training. Lina partitions the communica-

67

tion operations into small micro-ops and schedule them strategically in order

to prioritize all-to-all without impeding allreduce and the computation process.

We introduce the design challenges in Section 4.4.1. In Section 4.4.2, we present

Lina’s communication scheduler that uses tensor partitioning and pipelining to

improve the training efficiency.

4.4.1 Design Challenge

Intuitively, Lina can prioritize all-to-all and avoid concurrent execution with

allreduce with strict priority scheduling. All-to-all is always dispatched first if

both are present in the queue, and subsequent operations have to wait until the

running one finish to make sure allreduce does not share the bandwidth.

It turns out that simply prioritizing all-to-all is not as efficient as one may

expect. For work-conservation, when an allreduce arrives first, it should be

launched immediately. The problem is when an all-to-all arrives later, though

ideally one would preempt the allreduce due to priority scheduling, this is not

possible in current multi-GPU communication libraries such as NCCL [102]. The

communication primitives are highly optimized and upon being called, their

complete transmission strategies are settled and pushed to the CUDA streams.

There is no control knob inside each primitive to adjust how it shares resources

(e.g. CUDA cores, network bandwidth) with others. Thus, as the example in

Figure 4.7b shows (based on testbed experiments), naively prioritizing all-to-all

actually leads to a longer completion time for the first all-to-all and training step

time compared to the baseline in Figure 4.7a.

68

Gradient i, i-1 Ready
Stream a
Stream b
Stream c ms

0 4.1 19.3 26.9 29.05.7

Bucket [Gi...Gi-2]

14.7 17.7

Gate

12.0

All-to-all

FFNCombine

All-to-all

13.3

Gi Gi-2...

(a) Baseline. Shadowed all-to-all and allreduce are their completion times without concurrent
operations. Computing the entire MoE layer’s gradients ends at 29.0ms.

Gradient i, i-1 Ready
Stream a
Stream b
Stream c ms

0 4.1 19.6 28.8 30.95.7

Bucket [Gi...Gi-2]

Gate

12.0

FFNCombine

All-to-allAll-to-all

21.2

Gi Gi-2...

(b) Naively prioritizing all-to-all without concurrent transmission can lead to worse results; com-
puting the MoE layer’s gradients ends at 30.9ms. The completion time is profiled. Theoretically,
the completion time should be the same as Figure 4.7a.

Gradient i, i-1 Ready
Stream a
Stream b
Stream c ms

0 4.1 24.6 30.45.7

Bucket [Gi... Gi-2]

13.3

FFNCombine

All-to-allAll-to-all

22.5

Gate

14.9

Gi Gi-2...

(c) Deferring allreduce to after the second all-to-all leads to better training efficiency; computing
the MoE layer’s gradients ends at 24.6ms.

Stream a
Stream b
Stream c ms

0 4.1 23.85.7 13.3

FFNCombine

All-to-allAll-to-all

22.5

Gate

14.9

Gi

24.6

Gradient i, i-1 Ready

Gi-2

Gi ... Gi-2

Gi-1

(d) Scheduling results if the arrival time and running time of communication operations are
known a priori. The allreduce completes much faster than (c).

Figure 4.7: Backward pass of MoE training. The yellow background is the period of
computing the gradients of the MoE layer. Stream a is responsible for the computation
process and streams b and c are for communication. This timeline is extracted from a
real run of the 419M-parameter benchmark model in Table 4.1.

A potential solution is to obtain the arrival time and running time of the

69

upcoming all-to-all and allreduce, and orchestrate them accordingly to maximize

the efficiency. Assuming we know that the allreduce for gradient i can complete

before all-to-all and the completion time of gradient i− 1’s allreduce is shorter

than FFN computation. Then we can schedule gradient i− 1’s allreduce to the

gap between the two all-to-all operations at 13.3ms as depicted in Figure 4.7d.

Obtaining the precise knowledge of arrival and running times is, however, a

daunting task. ML frameworks such as PyTorch fuse gradients into buckets

based on a user-defined bucket size to optimize allreduce efficiency. Yet in large

Transformer-based models, gradient sizes are also large; since bucketing is done

on the gradient boundary, the actual bucket size for allreduce varies wildly [118].

Moreover, the implementation details of allreduce make it difficult to acquire a

reliable running time estimate as prior work has found out [24].

The other design choice is to blindly defer allreduce until an even number of

all-to-all finish as there should be a larger gap between the backward pass of two

MoE layers relative to FFN’s backward computation. Figure 4.7c shows the best

scheduling result based on the baseline in Figure 4.7a. In this case, allreduce can

be launched when the second all-to-all finishes and completes before the first

all-to-all of the next MoE layer (not shown in the figure). Yet, in other (worse)

cases, allreduce may still block the all-to-all of the upcoming MoE layer if it takes

relatively longer. In the extreme case, no allreduce can be launched until all four

all-to-all operations of the current step finish. Since devices have to wait for

allreduce before moving onto the optimization phase, this incurs more delay and

is undesirable for wait-free backward pass [167].

4.4.2 Tensor Partitioning and Micro-Ops

To resolve the above challenges, we propose tensor partitioning that breaks down

a communication operation into micro-ops, which can be easily prioritized with

high efficiency.

70

Stream a
Stream b
Stream c ms

0 4.1 24.65.7 13.3

FFNCombine

All-to-allAll-to-all

22.5

Gate

14.9
AR AR

Gradient i, i-1 Ready
Gi ... Gi-2

Gi-1GiAR Gi-2

23.8

(a) Prioritize all-to-all and partition allreduce tensors. Instead of bucketing gradients, we partition
gradient i into three chunks when it is computed.

Stream a
Stream b
Stream c ms

0 4.1 23.0 25.65.7 13.3

Combine

20.9

Gate

FFN

AR AR AR AR AR
All-to-all All-to-all

Gi ... Gi-2

(b) Tensor partitioning for all-to-all and pipeline the FFN computation.

Figure 4.8: We show the scheduling results from Figure 4.7a with tensor partitioning.
All-to-all and allreduce micro-ops are of the same size.

Tensor partitioning. Unlike tensor bucketing which fuses multiple gradients

for an allreduce, Lina partitions each gradient tensor into equal-sized small

chunks and executes individual allreduce micro-ops independently. This brings

two advantages. First, it resolves the varying bucket size problem for allreduce

since each micro-op is uniform in size now. Second, micro-ops naturally make

better use of bandwidth [107] without causing too much delay to allreduce under

priority scheduling. Consider the same setup from Figure 4.7a, in Figure 4.8a

we partition gradients into five chunks. Before the first all-to-all arrives, Lina

launches three allreduce micro-ops; after the first all-to-all ends, it starts another

micro-op to opportunistically make use of the expert computation time. Com-

pared to the scheduling result without micro-ops in Figure 4.7c, allreduce for

gradient i− 2 now completes 6.6ms or 21.7% faster without prolonging all-to-all.

Tensor partitioning does incur overhead due to the partition and concatenation

operations before and after an allreduce, but it is mild: the overall overhead

71

in Figure 4.8a’s case is 764us. Section 4.7.2.2 has more details of the overhead

analysis.

Pipelining micro-ops. Intuitively, we can also partition all-to-all which provides

an opportunity to pipeline the expert FFN and further reduce the time that

computation is blocked. Specifically, we can pipeline the expert computation

and all-to-all micro-ops (Figure 4.8b). Since the FFN computation is in token

granularity, the expert can start computing with a subset of the tokens after one

all-to-all micro-op. With pipelining, we can eliminate the FFN time which is

1.6ms in this example.

Expert packing. Ideally, the FFN and all-to-all micro-ops should take a similar

time so that both compute capacity and network bandwidth are fully utilized

without any bubbles in the pipeline. However, we notice that a single FFN micro-

op takes much less time than its corresponding all-to-all micro-op (Figure 4.8b).

In Lina, we consider packing multiple experts on each device whenever possible

to maximize the pipelining efficiency. Lina adopts the following approach:

starting with one expert per device, it iteratively increases the number of experts

per device in powers of two, until the FFN computation exceeds that of the all-to-

all micro-op. In case of GPU memory shortage, we adopt DRAM-offloading [126]

to transfer expert parameters that are not currently in use to host memory.

4.5 Scheduling Resources in Inference

Recall in Section 4.2.2, we have shown empirically that skewed expert popularity

leads to unbalanced processing times across tokens of the same batch in MoE

inference, which delays all-to-all and causes imbalanced bandwidth for it severely.

The root cause lies in the data granularity mismatch between the expert and

the attention layers in the model: an expert processes individual tokens, but the

attention layer processes an entire sequence as a whole. Our design question is

72

thus: How can we ensure that each token within the same batch experiences the

same end-to-end completion time no matter its expert selection result? We will

first discuss the challenge of achieving this through dynamic resource scheduling

(Section 4.5.1), and then present our design that exploits the unique token-level

expert selection pattern to address the challenge in Section 4.5.2.

4.5.1 Design Challenge

To cope with skewed expert popularity, intuitively one must accordingly adjust

the resource allocation for experts. This adjustment also needs to be done for

each input sequence as the expert popularity distribution varies across sequences.

An immediate question is: how can we know the expert popularity distribution,

before the input is processed by the gating network?

This question is challenging for two reasons. First, even for a given batch

of input, expert popularity varies across MoE layers of the model. We collect

the expert popularity of different MoE layers for 1000 batches of input requests.

Table 4.2 shows the top-4 popular experts of two 12-expert inference tasks: text

generation and translation. Observe that each MoE layer of the same task (model)

has completely different popular experts. This also suggests that dynamic re-

source scheduling has to be done before each MoE layer in order to be effective.

Moreover, scheduling resources according to the actual expert selection results, as

some might be thinking, incurs delay in collecting information, making schedul-

ing decisions, and coordinating the all-to-all amongst all experts with respect

to the new expert-device mapping, all of which are blocking operations and

are performed at each layer. This is far from optimal (as will be shown in Sec-

tion 4.7.3.1). Thus, we need to know as much as possible the expert popularity

before the gating network selects experts in each layer, so these overheads can be

largely overlapped with MoE computation.

73

4.5.2 Popularity based Scheduling

Lina tackles the design challenge by exploiting the token-level expert selection

pattern which we empirically establish now. Building upon this, we design

a resource scheduler that replicates popular experts on proportionally more

devices in order to better balance the workload.

Pattern in expert selection. Experts in MoE models are trained to specialize in

different types of input. We find that a token’s expert selection demonstrates a

pattern across the MoE layers. Tokens that have selected the same expert in layer

i tend to select the same expert again in layer i + 1. We trace the expert selection

of sampled tokens. For each group of tokens that have selected the same expert

in layer i, we calculate the ratio of them that in the next layer also select one of

the same top-k experts ranked locally among the same group. Figure 4.9 plots

this ratio averaged over token groups in two 12-layer MoE models. We see 41.94%

tokens exhibit this pattern when k is 1 and 54.59% when k is 2, and deeper layers

see more tokens with this pattern.

Model& Dataset Layer Top-4

Transformer-XL
& Enwik8
(Text generation)

3 9 4 5 10
4 5 7 8 10
8 9 2 3 13

12 4 5 15 8

BERT-Large
& WMT En-De
(Translation)

6 7 6 10 1
8 10 6 2 15

10 9 4 11 8
12 1 8 10 14

Table 4.2: Top-4 popular experts in
sampled MoE layer of two MoE mod-
els.

0 1 2 3 4 5 6 7 8 9 1011
Layer

20
34
48
62
76
90

R
at

io
 (%

) Transformer-XL

BERT-Large

Top-1
Top-2

Top-1
Top-2

Figure 4.9: Ratio of tokens that select one of
the top-k experts in layer i + 1 given that they
have selected the same expert in layer i.

This observation makes intuition sense. The gating network has a simple

architecture, and their routing or expert selection decision is made (largely) based

on relatively simple features, such as the parts of speech of a word (noun, verb,

74

etc.), and the meaning of the word (number, time, etc.) [80]. These features are

fixed for each token. Meanwhile, experts focus on the local syntax information

of each token rather than the cross-dependency within a sequence. For all these

reasons, similar tokens naturally tend to be processed by the same or similar

experts in each layer.

Estimating expert popularity. Though this pattern may not be sufficient to

predict a particular token’s expert selection accurately, it provides enough clues

for us to estimate the overall expert popularity for a given batch. Specifically,

Lina’s estimation approach works as follows. In the profiling stage, we collect the

expert selection results of all tokens when the load balancing loss is minimized

and becomes stable. We then group tokens that select the same experts from

layer i− l to layer i, which represent a unique sample path of experts used. For

each sample path j, we compute the expert popularity distribution Ψi+1
j for layer

i + 1. Here l is the path length to control the accuracy-cost tradeoff in profiling: a

larger path length leads to more accurate estimation for layer i + 1 at the expense

of higher data collection and computation costs.

Then based on the profiled distributions {Ψ}, Lina can estimate the next

layer’s expert selection distribution for each sample path of experts traversed by

a token in inference (starting from the l-th layer of the model). In each layer i, for

a sample path j, we pick the top-k expert(s) of the subsequent layer from Ψi+1
j

and use their probabilities {Pi+1
j (e)} to represent expert popularity for resource

scheduling, where e denotes an expert. The reason why we only consider top-k

experts is that they demand the most resources, and the remaining experts have

low popularity (Figure 4.9). Note that this estimation happens before any MoE

layer computation takes place.

Two-phase scheduling. During inference, Lina dynamically conducts layer-wise

resource scheduling in two phases.

The first phase happens right after the expert popularity estimation at each

75

MoE layer, when Lina relies on the estimation to replicate popular experts on

more devices and pack unpopular ones onto fewer devices. Specifically, the total

number of devices for expert e is determined by:

ne = N ×
Nt

∑
t=1

Pi+1
j(t) (e)/Nt, (4.1)

That is, for the current batch of input with Nt tokens, using estimation from

each token t’s sample path j(t) up to layer i, the overall popularity of expert e

is estimated as ∑Nt
t=1 Pi+1

j(t) (e)/Nt for layer i + 1 accounting for all tokens. This

requires the same proportion of devices assuming the expert parallelism degree

is 1 (i.e. the number of devices equals the number of experts). For experts with

the estimation ne, we adopt the first-fit-decreasing heuristic to pack them into the

empty devices so the total devices used are minimized. It is possible that some

experts, being extremely unpopular (for this batch), are not amongst the top-k

list of any tokens and thus do not have their ne estimation. They are assigned

evenly to the remaining free devices if any; otherwise are randomly assigned to

a device.

In phase two, Lina fine-tunes the estimation-based scheduling decision after

the gating network selects the actual experts. It checks if the selection result

deviates significantly from the estimation, by comparing the overall top-2k

experts. If the two lists are identical, no fine-tuning is needed and inference

continues. Otherwise, the scheduler re-computes the resource allocation with

the actual expert popularity now available following the same logic in phase 1.

The fine-tuning phase does incur delay to collect the gating outputs and check

against the estimation, which is necessary to deal with inaccurate estimation

that turns out to be much more detrimental to performance, if left unchecked

(Section 4.7.3).

76

4.6 Implementation

We implement Lina on DeepSpeed MoE and PyTorch using C++ and Python. Py-

Torch 1.10, CUDA 11, and NCCL 2.10 are used. We modify PyTorch’s implemen-

tation of distributed training to support Lina in DeepSpeed. The implementation

has ∼7500 LoC.

4.6.1 Training

Lina’s communication scheduler for training is deployed on all devices and runs

a single thread. Since the communication scheduling is purely local in scope, no

coordination is needed across the scheduler instances on different devices.

Communication scheduler. Each scheduler instance maintains a priority queue

to schedule the micro-ops. The micro-op size is passed in as a hyperparameter.

Lina uses the built-in APIs chunk and cat in LibTorch to partition the data in

the token dimension. We avoid putting chunks from different gradients into the

same micro-op to simplify the subsequent concatenation operation. Moreover,

the scheduler stops launching allreduce micro-ops if the combining computation

in backward pass, since this implies all-to-all is imminent. We pipeline all-to-

all micro-op in the MoE layer. FFN is ready to start right after each all-to-all

micro-op.

Expert packing coordinator. We embed a packing controller in the MoE model

and it runs a single thread. Expert packing is dynamically adjusted after 10

training steps. In the forward pass, the controller records the completion times

of all-to-all and FFN micro-ops. When FFN micro-ops are shorter than all-to-all,

the controller starts to pack experts. First, we initialize the new process groups.

Second, the controller inserts a one-time synchronous all-to-all to exchange expert

parameters between packed devices that would be invoked at the upcoming

iteration. Finally, multi-stream parallel execution is adopted for both forward

77

and backward passes when more than one expert are hosted on a device.

4.6.2 Inference

Resource scheduler. The inference scheduler runs on a dedicated thread on

device 0 of the cluster and manages resource scheduling. Each device saves the

weights of all experts in their host DRAM and the collected layer-wise expert

popularity distribution using multiple unordered_map, one for each layer. If

GPU memory is in shortage, a device only loads one expert and the profiled

distribution of one layer at a time.

In phase one of scheduling, all relevant communication happens by piggy-

backing the information on the regular all-to-all to reduce overheads. For each

MoE layer, each device appends the popularity estimation to the first all-to-all for

device 0. The scheduler computes the new expert-device mapping and instructs

each device which expert and how many to host via the second all-to-all. We also

include necessary information to coordinate all-to-all of the next layer, including

the list of devices with the same expert, and how many tokens each replica

should handle to balance the load. Devices then swap in the expert weights for

the next layer. All these procedures are pipelined with model computation.

In phase two, each device updates the actual expert popularity in a separate

NCCL send to the scheduler. If no fine-tuning is required, the scheduler broad-

casts a resume signal. This only creates a negligible overhead as the transfer size

is tiny. Otherwise, Lina broadcasts the fine-tuned expert-device mapping. The

model computation is blocked during phase two until the scheduler’s command

is received.

All-to-all coordination. In inference, Lina uses all-to-all with an unequal split.

That is, the transfer size to each device in all-to-all does not need to be the

same. Using unequal split all-to-all can save the overhead of initializing multiple

process groups. A placeholder data pointer is passed to all-to-all if no tokens are

78

directed to a certain device.

Expert packing. Expert computation is sequential on devices hosting multiple

experts. Each device loads the experts one at a time to perform computation

and move on to the next packed expert. In this manner, Lina avoids placing

extra strain on the GPU memory. The second all-to-all is launched when the

computation for all packed experts is completed. We set a maximum number of

experts per device to control the overhead of swapping the weights.

4.7 Evaluation

We present the testbed evaluation results here.

4.7.1 Setup

Testbed setup. Our testbed has four worker nodes. Each node has 4 Ampere

A100 GPUs with 40GB memory and is equipped with 100Gbps InfiniBand.

MoE models. We convert three common Transformer-based dense language

models to MoE ones for training.

• Transformer-XL [29]: a 24-layer encoder model.

• BERT2GPT2 [156]: a 12-layer encoder-decoder model.

• GPT-2 [121]: a 12-layer decoder model.

Besides, we consider two inference tasks.

• Transformer-XL [29]: The inference task is text generation with Enwik8 [36]

test set.

• BERT-Large [32]: a 12-layer decoder model. The inference task is translation

using WMT En-De [155] test set.

79

All FFN layers in these models are converted to MoE layers. We vary the

number of experts in an MoE layer from 2, 4, 8, to 16. We adopt top-2 gating in

training and top-1 gating in inference following [37], i.e. k = 2 in training and

k = 1 in inference

Metrics. We consider four metrics to evaluate Lina.

• Training step time: Time to complete one step of training.

• Inference time: Time to complete one batch of inference.

• All-to-all time: The completion time of all-to-all.

• MoE layer time: Time to complete one MoE layer of computation and

communication.

In collecting these metrics we use PyTorch Profiler to obtain CUDA kernel

execution time and GPU activities. Training results are averaged over 50 steps

after a 10-step warm-up period. Inference results are averaged over the test set.

Since the optimization introduced by Lina does not affect the precision of model

parameters, model accuracy is unaffected and we omit its evaluation.

Training configurations. Lina’s micro-op communication scheduler adopts a

tensor partition size of 30MB, which can minimize the period blocked by all-to-all

in most cases. Expert packing is launched at the 10-th step of each training task

and is adjusted every four steps.

Inference configurations. Lina’s resource scheduler runs on device 0. The path

length l in popularity estimation is 3; the maximum number of experts packed

on a device is 4.

Baselines. We use the vanilla DeepSpeed [30] as the Baseline. We also provide a

comparison to the open-source version of Tutel [144], which performs similarly

with DeepSpeed. We enable hierarchical all-to-all for both Lina and DeepSpeed

and disable Random Token Dropping [162] introduced by DeepSpeed.

80

4.7.2 Training

We start with Lina’s training performance. Note that Lina is evaluated when the

expert packing decision is stabilized; all settings here use 2 experts per device as

the best strategy except Transformer-XL with 16 experts, which uses 4 experts

per device. The number of GPUs is equal to the number of experts per layer in

both Baseline and Lina.

4.7.2.1 Overall Performance

Training step time. Figure 4.10 shows Lina’s speedup in step time over Baseline

and Tutel. All other aspects of the models stay the same (e.g. sequence length,

hidden states dimension, etc.). Compared to Baseline (DeepSpeed), step time

is reduced by an average of 1.37x and 1.47x for the 4- and 16-expert cases,

respectively, and by an average of 1.71x and 1.73x for 2- and 8-expert models,

respectively. The 2- and 8-expert cases see more significant gains as Lina’s packs

two experts per device as mentioned before. The 2-expert case thus boils down to

pure data parallelism without any all-to-all; the 8-expert models avoid inter-node

all-to-all as our servers have 4 GPUs each. Lina’s speedup over Tutel is slightly

smaller than that of DeepSpeed. Thus in the following we only use DeepSpeed

as the Baseline.

MoE layer time. We specifically seek to understand Lina’s gain in MoE layers in

both the forward and backward pass. As Figures 4.11 and 4.12 show, similar to

step time, the gain in the 2- and 8-expert cases is the largest. The forward and

backward pass of MoE layers in the 2-expert case are accelerated by 1.84x and

2.41x, and in the 8-expert case by 1.89x and 2.32x, respectively. Since backward

pass in Baseline suffers from the interference of allreduce while the forward pass

does not, the improvement in the backward pass is more significant. Average

GPU utilization in the MoE layer for 16-expert cases is improved by at least 16%

81

1.2
1.4
1.6
1.8

DeepSpeed

2 4 8 16
Experts

1.2
1.4
1.6
1.8

Tutel

St
ep

 T
im

e
Sp

ee
du

p

Figure 4.10: Speedup of training step time
against two Baselines.

2 4 8 16
Experts

1.25

1.50

1.75

2.00

M
oE

 F
w

d
 S

pe
ed

up

Figure 4.11: Speedup of MoE layer’s for-
ward pass completion time.

as the period blocked by all-to-all is minimized with Lina.

2 4 8 16
Experts

1.8
2.0
2.2
2.4
2.6

M
oE

 B
w

d
 S

pe
ed

up

Figure 4.12: Speedup of MoE layer’s back-
ward pass completion time.

4 8 16
Experts

1.8
2.0
2.2
2.4
2.6

A
ll-

to
-a

ll
 S

pe
ed

up

Figure 4.13: Speedup of all-to-all time in
forward and backward pass.

GPU utilization and memory usage. We measure the average GPU utilization

GPU memory usage (Table 4.3). We observe an average of 17.6% improvement in

GPU utilization due to the efficient scheduling of Lina. Expert packing would

lead to usage increase in GPU memory. The peak memory of BERT2GPT2 is

increased by 19.5% while Transformer-XL and GPT-2 use up all the memory and

apply DRAM-offloading to store the packed expert parameters.

All-to-all time. We then zoom in on all-to-all time in backward pass, where

Lina prioritizes all-to-all and avoids concurrent execution with allreduce. Expert

packing also reduces the all-to-all transfer size. Figure 4.13 shows an average

82

Expert Model
Average GPU Utilization(%) GPU Memory Peak Usage(%)

Baseline Lina Baseline Lina DRAM-offloading

16
Transformer-XL 66.2 83.4 72.1 100 3

GPT2 62.3 78.2 83.8 100 3

BERT2GPT2 63.5 82.5 74.3 94.2 7

Table 4.3: GPU utilization and peak memory usage of 16-expert MoE models. GPU
Memory Peak Usage is the ratio between the maximum usage and the total device
memory. DRAM-offloading indicates if it is applied.

speedup of 2.21x, 2.39x, and 2.31x in 4-, 8-, and 16-expert cases in all-to-all time,

respectively.

We also examine the pipelining efficiency between all-to-all and expert com-

putation in Lina. We define the pipelining efficiency to be the fraction of non-idle

time in the computation CUDA stream during the all-to-all duration. We calcu-

late the pipelining efficiency of Lina before and after adopting expert packing

in Table 4.4. The average improvement is 2.43x in 16-expert case, which also

demonstrates the benefits of expert packing. The expert FFN micro-op time is

thus closer to the all-to-all time. We find that two experts per device can achieve

the best pipelining efficiency in most cases, justifying our settings mentioned

before.

Expert Model
Pipelining Efficiency

w/o Packing w/ Packing (Experts per Device)

16
Transformer-XL 33% 86% 4
GPT-2 36% 85% 2
BERTGPT2 34% 79% 2

Table 4.4: Pipelining efficiency comparison with and without expert packing.

4.7.2.2 Communication Scheduler

We now present an in-depth analysis of Lina’s priority-based micro-op sched-

uler, aiming to understand the benefit of each design choice. For fairness all

83

experiments here are obtained without expert packing in Lina, i.e. one expert

per device.

Tensor partitioning and pipelining. To justify our design, we incrementally add

the key design choices to Baseline and see their corresponding gain: first priority

scheduling, then tensor partitioning, and lastly pipelining. Besides, we consider

a fixed scheduling strategy where allreduce is always scheduled between pairs of

all-to-all operations (i.e. two MoE layers) with tensor fusion enabled in PyTorch’s

DistributedDataParallel by default (same as Baseline).

Figure 4.14 shows the step time comparison. We make several interesting

observations here. First, using priority brings about 10%–30% gain over Baseline

in most cases, with an average of 24%. Priority scheduling in general presents

more benefit when more devices and nodes are used in training. The main

reason is that all-to-all’s slowdown due to sharing bandwidth with allreduce

is more severe as training scales out. Second, tensor partitioning significantly

improves the benefit of prioritizing all-to-all: step time is reduced over Baseline

by 1.36x, 1.36x, 1.41x and 1.42x in 2-, 4-, 8-, and 16-expert cases, respectively on

average. On the other hand, pipelining’s gain is limited as expected, since expert

computation takes much less time than all-to-all without expert packing (recall

section 4.4.2). Overall, all three design choices can effectively reduce all-to-all’s

completion time.

2 4 8 16
Experts

1.0

1.2

1.4

1.6

St
ep

 T
im

e
 S

pe
ed

up

(a) Transformer-XL.

2 4 8 16
Experts

1.0

1.2

1.4

1.6

St
ep

 T
im

e
 S

pe
ed

up

(b) GPT-2.

2 4 8 16
Experts

1.0

1.2

1.4

1.6

St
ep

 T
im

e
 S

pe
ed

up

(c) BERT2GPT2.

Figure 4.14: Training step time speedup over Baseline with different design choices of
the communication scheduler.

84

We also observe that the relative benefit of priority scheduling and tensor

partitioning is model-specific: GPT-2 enjoys much more gain from priority

compared to tensor partitioning while the other two models do not exhibit such

clear pattern. This is likely due to the degree of overlapping of all-to-all and

allreduce: most allreduce can fit in between all-to-all operations in GPT-2, and as

a result using priority scheduling alone is very beneficial.

Finally, the fixed scheduling strategy leads to the smallest gains in almost all

cases. This is because (1) all-to-all still has to fair-share bandwidth with allreduce,

and (2) tensors are not partitioned which aggravates the impact of allreduce. This

demonstrates again the effectiveness of our design in prioritizing all-to-all with

smaller tensors instead of using fixed heuristics that cannot opportunistically

maximize efficiency.

Partition size. We also evaluate the impact of partition size on the communi-

cation scheduler. Figure 4.15 shows the step time of 16-expert models when

we gradually increase the partition size from 10MB to 100MB. We find that

a partition size beyond 50MB slows down Transformer-XL and BERT2GPT2

compared with 30 MB. As long as the period blocked by all-to-all is minimized,

step time would be minimum. Therefore, for each model and setting, there are

multiple optimal partition sizes. Ideally, the scheduler can more precisely control

the operations with a smaller partition size. In practice, small partitions (below

10MB) may cause heavy transmission overhead in each micro-op and degrade the

overall performance [112]. Overhead analysis. We provide a brief analysis of the

overhead incurred by Lina’s communication scheduler. First, the preprocessing

and postprocessing, including tensor partitioning and concatenation, take an

average 1.02% of the step time. Second, we measure the transmission overhead

of micro-ops. We sum up running times of all the communication micro-ops and

compare against those without partitioning in Baseline. The average completion

time is lengthened by 1.7%.

85

10 30 50 100 200
Partition Size (MB)

1.0

1.2

1.4

1.6

St
ep

 T
im

e
 S

pe
ed

up

Transformer-XL
GPT2
BERT2GPT2

Figure 4.15: Partition size increases from 10MB to 200MB in 16-expert models.

4.7.3 Inference

We then evaluate Lina’s inference performance. Each experiment is repeated five

times: two of which measure the end-to-end inference time, and the rest profile

the different components with Profiler and collect statistics for overhead and

estimation accuracy. This way the inference time is not affected by the profiling

overhead.

4.7.3.1 Resource Scheduler

Inference time. Figure 4.16 shows the median and 95% inference time of Baseline

and Lina. We also present the ideal inference time with a perfectly balanced load

across devices in all MoE layers. This is obviously challenging to achieve with

real-world requests. Thus we modify the gating network to constantly output a

balanced expert selection to obtain this benchmark. We normalize all results to

the Ideal value. Lina’s resource scheduler effectively balances the load among

devices and achieve inference time close to Ideal. Compared to Baseline, median

inference time is reduced by 1.54x and 1.45x for the 4- and 16-expert Transformer-

XL, and by 1.36x and 1.46x for the 4- and 16-expert BERT-Large, respectively.

The 95%ile inference time is reduced by 1.82x for 16-expert Transformer-XL and

1.68x for 16-expert BERT-Large. The reduction on tail inference time increases

86

2 4 8 16
Experts

0.0
0.5
1.0
1.5
2.0

N
or

m
al

iz
ed

 In

fe
re

nc
e

Ti
m

e

(a) Median inference time with Transformer-
XL.

2 4 8 16
Experts

0.0
0.5
1.0
1.5
2.0

N
or

m
al

iz
ed

 In

fe
re

nc
e

Ti
m

e

(b) 95%ile inference time with Transformer-XL.

2 4 8 16
Experts

0.0
0.5
1.0
1.5
2.0

N
or

m
al

iz
ed

 In

fe
re

nc
e

Ti
m

e

(c) Median inference time with BERT-Large.

2 4 8 16
Experts

0.0
0.5
1.0
1.5
2.0

N
or

m
al

iz
ed

 In

fe
re

nc
e

Ti
m

e

(d) 95%ile inference time with BERT-Large.

Figure 4.16: Median and tail inference time. We normalize the inference time with the
ideal result. The median and tail inference time is the same in Ideal.

with more experts in a layer, because a wider MoE layer is more likely to present

more skewed expert popularity, giving more room for Lina to optimize. Lastly,

Lina’s gap to Ideal can be explained for two reasons other than the overheads.

First, Lina cannot perfectly balance load: the least popular experts are randomly

placed for example. Second, Lina starts to schedule from the fourth layer.

MoE layer and all-to-all time. With Lina, MoE layer time includes gate compu-

tation, phase two of scheduling, two all-to-all, and expert computation; phase

one of the scheduling is largely overlapped with computation as explained in

section 4.6.2. The 95%ile MoE layer time is reduced by 1.87x and 1.77x in 8-

and 16-expert Transformer-XL over Baseline and by 1.58x and 1.81x in 8- and

16-expert BERT-Large as in Figure 4.17.

We also extract all-to-all time, which is a direct indicator of whether Lina bal-

87

2 4 8 16
Experts

0.0
0.5
1.0
1.5
2.0

N
or

m
al

iz
ed

M
oE

 L
ay

er

(a) Transformer-XL.

2 4 8 16
Experts

0.0
0.5
1.0
1.5
2.0

N
or

m
al

iz
ed

M
oE

 L
ay

er

(b) BERT-Large.

Figure 4.17: 95%ile completion time of MoE layer.

ances load across devices effectively. We present the tail all-to-all time reduction

of different layers in Figure 4.18. The average and maximum improvements are

1.96x and 2.50x over Baseline. These results confirm that Lina effectively balances

the load of each device and all-to-all transfer size of each link.

T3 T4 T8 T9 B4 B6 B10 B11
Model & Layer

0
1
2
3

N
or

m
al

iz
ed

 A
ll-

to
-a

ll

Figure 4.18: All-to-all time in 16-expert MoE. T is Transformer-XL and B is BERT-Large.

Two-phase scheduling. We then evaluate the effectiveness of our resource

scheduler’s design. We consider separately Lina without estimation and without

fine-tuning in order to understand their individual gains. Lina w/o estimation

refers to scheduling using the actual routing decision computed by the gating

network.

In Figure 4.16, we present the comparison of inference time for all schemes.

Without estimation the median inference time is worsened by 24.0% and 18.6%

for 16-expert Transformer-XL and BERT-Large in Lina. The scheduler works

88

after the gating network and blocks all-to-all with the following computation

until it completes. Thus the scheduling overhead manifests at each MoE layer,

overweighing the additional gains brought by accurate popularity information.

The tail inference time is less affected compared to the median, but still suffers

without estimation.

Without fine-tuning, tail inference time is prolonged by 26.7% and 33.1%

for 16-expert Transformer-XL and BERT-Large. This suggests that fine-tuning

also plays an indispensable role when the estimation shows a large difference

from the actual routing decision. For example, if the top-1 expert in the actual

routing decision is estimated as an unpopular one packed with others, the Moe

layer time would even be worse than Baseline. More discussions are presented

in Section 4.7.3.2. The importance of fine-tuning depends heavily on estimation

accuracy and number of expert in MoE layer.

Overhead analysis. We dissect the overhead of the resource scheduler, by

considering the scheduling times of phase one and phase two separately. The

scheduling time for both phases averages at ∼6.2ms since they share the same

logic and coordination workflow. Yet, the overhead of phase one is largely

overlapped with model computation. Though overhead of phase two with re-

scheduling is more salient, it only kicks in for 23% of the cases on average, and

is smaller than the idle time incurred by skewed expert popularity. The overhead

of phase two without fine-tuning is merely 1.45ms.

4.7.3.2 Popularity Estimation

We now analyze Lina’s popularity estimation method.

Estimation accuracy. We first examine the estimation accuracy across MoE layers.

We resort to the same definition used in Lina’s phase two scheduling: if the top-2

(recall k = 1 in inference) estimated experts are identical to the actual routing

decision, we consider the estimation accurate. Figure 4.19 shows the accuracy for

89

every MoE layer in two inference tasks. Overall, estimation accuracy is 58.41%

and 54.16% for Transformer-XL and BERT-Large, respectively. The estimation

accuracy is higher in the latter layers of the model, which is consistent with our

observation in Figure 4.9. We also compare the complete popularity rankings

given by the estimation to better understand its accuracy. Using 1000 random

batches of the Transformer-XL model, we observe that errors usually happen at

experts with a similar popularity. An average of 3.67 experts out of the estimation

are incorrectly ordered. Therefore, the fine-tuning only requires little adjustment

to the experts packed together. The effectiveness of Lina’s estimation can be

justified.

3 4 5 6 7 8 9 10 11
Layer

35
45
55
65
75
85

R
at

io
 (%

) Transformer-XL
BERT-Large

Figure 4.19: Estimation accuracy of 16-expert MoE.

Sample path length. We also investigate the impact of sample path length l. The

longer the sample path of expert selection is for making an estimation, the more

accurate the result is. Table 4.5 shows Lina’s performance degrades with l = 1,

in terms of inference time, estimation accuracy, and the occurrence of phase two

fine-tuning, compared with the default length of 3. Longer paths can elevate the

estimation accuracy and further reduce the number of times of Lina’s fine-tuning.

However, due to the problem of a slower start, the reduction of inference time is

not as noteworthy as the estimation accuracy. For a path length of 6, Lina shows

90

a similar median and tail result as the performance with a path length of 3.

Model
Path

Length
Norm. Inference Time Fine-tuning

(%)
Estimation

Accuracy (%)Median 95%ile

1 1.41 1.32 76.5 31.6
Transformer-XL 3 1.16 1.04 25.7 60.4

6 1.19 1.11 22.5 71.4

1 1.34 1.35 71.3 28.3
BERT-Large 3 1.07 1.04 32.2 63.5

6 1.09 1.11 27.1 66.0

Table 4.5: Lina’s performance using different path lengths during estimation. Both
models have 16 experts per layer. Inference time is normalized to Ideal.

Generalizability. We proceed to evaluate how well Lina’s popularity estimation

approach can be generalized to different tasks. Table 4.6 shows the estimation

accuracy of four tasks with different datasets. The 95%ile inference time can

achieve at most 1.04x of the Ideal inference time and the estimation accuracy is

at least 62.3%. Lina’s estimation method relies on the patterns obtained from

training stage. Therefore, it is tailored to each specific task and proves to be an

effective approach to capturing the expert popularity prior.

Task Dataset Model Norm. 95%ile Inference Time Estimation Accuracy

Sentiment
Analysis

IMDB Reviews [90]
BERT

1.08 64.4%
Twitter [98] 1.11 62.3%

Translation
(English)

WMT French [155]
T5 [123]

1.04 68.8%
WMT Russian [155] 1.08 62.5%

Table 4.6: Lina’s performance on different tasks and datasets. Inference time is normal-
ized to Ideal. The path length is set to 3.

4.8 Discussion

Parallelism in training. With the increasing scale of language models, the

adoption of pipeline and tensor parallelisms has become essential [135]. Pipeline

91

parallelism involves the use of blocking send and receive operations to transmit

intermediate activations, while tensor parallelism utilizes blocking all-reduce

operations to combine tensor partitions. Extensive research has been conducted

on coordinating communication operations for dense models [172, 64, 144]. Lina

focuses on sparsely-activated MoE with data and expert parallelism, which are

orthogonal to existing work.

Estimation of expert popularity. The current estimation approach used by

Lina relies on data collection during the training stage and does not achieve

high-fidelity estimation result. The reason is that inference datasets do not have

exactly same distributions and load balancing loss is disabled during inference

stage, which differs from training stage. Besides, our estimation method is

relatively naive, intending to prove the feasibility of expert selection estimation.

While fine-tuning can assist in improving efficient expert placement decisions,

an estimation method with improved accuracy and confidence would further

reduce inference time. One potential approach is to leverage machine learning

techniques to train a compact yet powerful model that can predict the expert

selected by each token in every MoE layer ahead of time, when the requests are

received.

4.9 Related Work

Existing MoE systems. Recent literature has proposed MoE-specific optimization

techniques. DeepSpeed [124] enables distributed training for MoE models and

leverages flexible combinations of parallelism strategies. It also introduces a

novel MoE architecture called Pyramid-Residual MoE. PR-MoE applies experts

only where they are most effective. Tutel [144] extends DeepSpeed and proposes

an adaptive parallelism switching strategy specialized at MoE training tasks. It

also includes a hierarchical all-to-all design to cope with the inter- and intra-node

92

GPU topology for better efficiency. It is complementary with Lina.

FasterMoE [50] proposes a roofline performance model to analyze the end-to-

end performance of MoE training systems. Guided by this model, they propose

a dynamic shadowing approach that pulls popular expert parameters instead

of sending tokens to the experts. They also design a topology-aware expert

selection strategy that relieves network congestion by sending tokens to experts

with lower latency.

Communication acceleration in distributed training. Our community has pro-

posed several communication schedulers for generic distributed training [48,

112, 10, 20, 24, 149]. The objective is to better overlap the communication and

computation operations in the backward pass and prioritize the communica-

tion of former layers over latter layers in the model. In Lina, we leverage the

domain-specific insight that all-to-all should be prioritized over allreduce in MoE

training, which is different from prior work. BytePS [65] proposes to reduce the

communication traffic by utilizing the heterogeneous GPU/CPU resources in a

training cluster. These acceleration techniques can be integrated into distributed

MoE. Lina can also benefit from this idea, since more available bandwidth can

be left to all-to-all operations.

93

Chapter 5

Adaptive Gating in MoE-based

Language Models

5.1 Introduction

The field of natural language processing (NLP) has undergone a remarkable

revolution driven by the rapid advancements in language models [16, 142, 42,

3]. They exhibit so-called “emergent” capabilities for a wide variety of appli-

cations [153]. However, as demands for these applications continue to grow,

scalability of these models poses an increasingly challenging hurdle due to con-

straints in computational resources, memory capacity, interconnect bandwidth,

etc. [114].

Sparsely-activated MoE is a promising paradigm to address the scalability

issue while maintaining a constant number of computation FLOPs [79, 37]. MoE

utilizes an ensemble of experts to collectively tackle the learning task. Each input

activates a subset of experts, resulting in a dynamically-changing and sparse

computation graph. This method effectively distributes the computation among

experts, increases model capacity and improves training efficiency [34, 124]. Very

recently, there has been quite some prior work on improving the performance of

94

Transformers using MoE [124, 177, 19, 40].

Despite MoE’s benefit in scalability, it suffers from suboptimal training effi-

ciency. In particular, we focus on the gating mechanism that selects the experts

for each token in this work. Existing MoE models adopt a fixed top-2 gating

in training while employing top-1 gating during inference for shorter response

times. Top-2 gating entails twice the computational cost per token and doubles

the data transfer size of all-to-all operations compared to top-1. Yet, it remains

unclear whether top-2 gating actually leads to performance gains that could

justify the additional overheads. Therefore, a comprehensive analysis of the

trade-off between training efficiency and model performance is increasingly cru-

cial. More practically, how to construct an MoE language model that effectively

balances training efficiency and performance, is of great interest and imminent

value.

Towards this end, we present our first attempt to empirically characterize and

improve the efficiency of the gating mechanism in MoE. We observe that across

various models and tasks, a large number of tokens display simple linguistic

characteristics or a single dominant feature, which allows them to be effectively

processed using just the top-1 expert. This observation suggests that the current

top-2 gating strategy incurs unnecessary computation costs for a significant

number of tokens.

Motivated by this insight, we further introduce adaptive gating in MoE that

enables tokens to be processed by a flexible number of experts depending on the

gating decision. Our approach, in contrast to conventional MoE models, pre-

serves the sparsity of MoE models while enhancing flexibility in token handling.

We incorporate a threshold within the gating network to conduct adaptive token

routing based on the distribution of expert probabilities. With adaptive gating,

the majority of tokens use simple top-1 gating; top-2 gating is selectively applied

only when necessary and beneficial, thus significantly reducing the computation

95

cost. However, the training efficiency cannot achieve the same improvement

as the computation cost due to the fact that tokens with top-2 gating always

incur a longer training step, thus becoming the bottleneck. Therefore, to enhance

training efficiency even further, we leverage the idea of curriculum learning by

strategically adjusting the order of training data samples.

We conduct extensive experiments on six NLP tasks with different encoder

and decoder models. The results show that our approach can effectively reduce

the end-to-end training time by at most 22.5%, while achieving comparable

inference quality with top-2 gating MoE models. Moreover, we show that the

tokens routed to two experts are coupled with the nature of each NLP task. For

sentiment analysis, those are the tokens expressing neutral opinions; translation

task pays attention to sentences with complex structure; Question and Answer

connects key words in question and context and assign both with top-2 gating;

summarization puts more effort in understanding the pronouns and finding

tokens expressing central idea; top-2 routing decision changes along with the

token to generated in text completion task and conversational tokens in dialogue

response task use top-2 experts frequently. Empirically, we find that a small

threshold value (i.e. 0.1, 0.2) in adaptive gating can lead to a similar performance

as top-2 gating.

Our contributions are as follows:

• We propose adaptive gating in the MoE training scheme, which enables

tokens to be processed by a flexible number of experts.

• We leverage curriculum learning to alleviate the training bottleneck caused

by varying execution times of tokens.

• We conduct extensive experiments on various NLP tasks and datasets and

present a thorough analysis of the gating decision of the tokens to prove

the effectiveness and efficiency of adaptive gating.

96

5.2 Background

5.2.1 Mixture-of-Experts

Mixture-of-Experts (MoE) has been adopted in various deep neural network

models [134, 21] and has shown great promise in enhancing the performance

of language models. For example, GShard [79] and Switch Transformer [37]

effectively scale Transformer-based language models with MoE layers.

In particular, these models typically employ an MoE layer to substitute the

feed-forward network (FFN) layer. The MoE layer comprises multiple FFNs,

each acting as an expert, along with a gating network. Each expert i is a fully-

connected two-layer network utilizing ReLU activation and with its own set of

parameters. For a given token x, the output of an expert can be defined as:

FFNi(x) = ReLU(x ·W i
0) ·W i

1, (5.1)

where W i
0 and W i

1 are the trainable weights of the two linear layers in expert i.

The gating network takes in the embedding vector of each token x and

multiplies them with its trainable matrix WG. The gate value for a specific token

can be determined through:

R = so f tmax(x ·WG). (5.2)

This softmax activation R indicates the weight of each expert in processing the

token. The gating network then dispatches this token to top-k experts with k

highest activations. The final output of the MoE layer is:

y = ∑
i∈E

Ri · FFNi(x), (5.3)

that is, the weighted sum of outputs from selected expert(s) E ⊂ {FFN1, FFN2...FFNN}.

The sparse nature of MoE improves the model scaling in size without increasing

97

the training cost.

Related work. Several prior works have explored the efficient use of gating

or expert selection in MoE. [4, 174, 49, 89] propose different approaches to

encourage expert specialization. [28] adopt a pre-defined expert assignment

for each input categories. [127, 178] propose to remove gating networks. [174]

present a novel selection mechanism where experts selects token instead of

token selecting experts. [49] introduce multiple routing policies to enhance

specialization in multi-task scenario. [127] use deterministic hashing, while [178]

use stochastic routing. However, it could lead to inconsistent inference results.

Therefore, they employ a regularized loss to penalize the discrepancy of expert

selection. All existing work adopts a fixed and equal computation capacity for

each token and expert, while we look into the trade-off between computation

costs and model performance with adaptive gating.

5.3 Design

We now discuss the design of adaptive gating in MoE for training.

5.3.1 Adaptive Gating in MoE

Observation. We first present our empirical findings from experiments with

classical MoE models. Specifically, we extract the softmax activations and analyze

the probability distribution of expert selection for each token in the gating

network. Figures 5.1 depict the normalized activation values of four sampled

tokens across 16 experts. We see that for tokens 1 and 4, their activations of the

top-1 and top-2 expert are very close as shown in Figures 5.1a and 5.1d, while for

tokens 2 and 3 a significant bias towards the top-1 expert exists as in Figures 5.1b

and 5.1c. We find that these significantly-biased distribution accounts for at least

55% of all the tokens in our evaluation.

98

0 10
Expert

0.00
0.05
0.10
0.15
0.20

N
or

m
. P

ro
b.

(a) Token 1

0 10
Expert

0.00
0.05
0.10
0.15
0.20
0.25

N
or

m
. P

ro
b.

(b) Token 2

0 10
Expert

0.00
0.05
0.10
0.15
0.20
0.25

N
or

m
. P

ro
b.

(c) Token 3

0 10
Expert

0.00
0.05
0.10
0.15
0.20
0.25

N
or

m
. P

ro
b.

(d) Token 4

Figure 5.1: Normalized expert probability computed by top-2 gating network from four
sampled tokens. Here we use the Sentiment analysis task list in Table 5.2.

Adaptive gating. Previous work has demonstrated that MoE experts specialize

in different linguistic aspects. Building upon our empirical findings, one can see

that many tokens can be effectively handled by a single expert during the training

stage. To control the number of experts handling each token, we introduce a

threshold parameter, denoted as T. If the activation value difference between

the top-1 expert, denoted as i, and the top-2 expert, denoted as j, is within the

threshold T, we consider the token as requiring both expert i and expert j for

processing. Otherwise, we route the token only to the top-1 expert.

Load balancing loss. Adaptive gating uses a flexible number of experts to

process each token. This flexibility, however, adds extra difficulty to the load

balancing problem in training which aims to evenly distribute tokens among

all experts. As it is still important to prevent the gating network from overly

concentrating on a very small number of experts, in adaptive gating, we impose

99

the soft load balancing constraints on the top-1 gating decisions, while allowing

top-2 gating decisions to be trained without any soft constraints. That is, the loss

of each MoE layer i becomes:

Li = Ei ∑
e∈E

f 1
e pe, (5.4)

where f 1
e is the fraction of tokens dispatched to expert e among those processed

by top-1 gating; pe is the average gating probability to expert e over all tokens in

the current batch, and Ei is the number of experts at layer i just as in classical

MoE [37].

5.3.2 Batching

Challenge. While adaptive gating provides effective computational savings,

Transformer MoE’s model architecture poses a significant challenge to training

efficiency. Specifically, there is a mismatch in the data processing granularity

between the MoE experts and the Attention layer. The MoE experts operate

on individual tokens, while the Attention layer requires input in the form of a

complete sentence. As a result, although the processing time for a large por-

tion of tokens is reduced by half in the MoE layer, we still need to wait until

the remaining tokens (in the same data batch) complete their top-2 processing.

Consequently, training step time cannot enjoy the same reduction as in computa-

tion. Table 5.1 shows the computation reduction as well as empirical MoE layer

running time, both normalized to conventional top-2 gating. We use PyTorch

Profiler to obtain the computation time of MoE layer. For simplicity, here we

force a fixed percentage of tokens to be routed to only top-1 expert and measure

the running time. The reduction in running time is clearly much smaller than

the computation savings.

Curriculum learning. In adaptive gating, we propose to incorporate the con-

cept of curriculum learning to address the aforementioned training efficiency

100

Gate Norm. Computation Norm. MoE Layer Running Time

Top-1 0.5 0.67
Adaptive (80% Top-1) 0.6x 0.76x
Adaptive (50% Top-1) 0.75x 0.92x
Adaptive (20% Top-1) 0.9x 0.97x

Table 5.1: We compare the computation savings and running time reduction of the MoE
layer of varying degrees of top-1 gating against top-2 gating. The MoE layer running
time is measured on our testbed Section 5.4.3. Tokens are randomly selected from the
data batch. Here we also use the Sentiment analysis task list in Table 5.2. We show the
results averaged from 40 runs.

challenge. Curriculum learning [14], as the name implies, is a paradigm where

training examples are presented to a model in increasing order of complexity.

It aims to enhance the learning efficiency and generalization performance of

models. By carefully designing the curriculum, the model is exposed to easier

examples at the initial stages, allowing it to build a solid foundation before

tackling more challenging concepts. This gradual learning process has shown

promising results in NLP [152].

Adjust training data order. Our intuition is that the number of experts required

by each token can be an indicator of the token complexity. We can therefore

reorder the training data in a way that prioritizes simpler sequences during

model training. Additionally, we can group together training data with similar

complexity levels to minimize the bottleneck effect caused by difficult tokens in

need of top-2 experts.

To quantify the complexity of a training sample d, we define a complexity

vector C:

Cd = [rd
0, rd

1, ...rd
L], (5.5)

where L is the number of MoE layers in the model, and ri represents the ratio of

tokens processed by top-2 experts to the sequence length (i.e., the total number

of tokens in data sample d) in layer i.

101

To determine the order of the training data, we identify the data sample with

the fewest tokens processed by top-2 experts, and calculate the cosine similarity

using complexity vectors of the remaining data samples. Training data is then

reordered based on this similarity value, starting from the most similar ones.

This approach allows the model to gradually learn from simpler sequences and

progressively handle more complex sequences.

5.4 Evaluation

We evaluate adaptive gating in MoE on six NLP tasks using various encoder and

decoder models. We then analyze the gating decision to better understand the

effectiveness of adaptive gating.

5.4.1 Tasks and Models

Table 5.2 summarizes the details.

Task Dataset Model Architecture

Sentiment analysis SST-2 [139] BERT-Base [31] 12-layer encoder
Translation WMT19 (De->En) [39] FSMT [103] 6-layer encoder, 6-layer decoder
Question and Answer SQuAD [125] BERT-Base [31] 12-layer encoder
Summarization CNN/Daily Mail [52, 128] BART-Large [81] 12-layer encoder, 12-layer decoder
Text generation wikitext [93] GPT-2 [121] 24-layer decoder
Dialogue response SODA [70] DialoGPT-medium [168] 24-layer decoder

Table 5.2: Overall performance of adaptive MoE and compared baselines in different
NLP tasks. All the models converge to the same loss value.

5.4.2 Baselines

We use the Transformer models from HuggingFace and convert the FFN layers

to MoE layers [72]. We compare adaptive gating’s training efficiency with the

following three baselines and then evaluate the inference performance with top-1

gating MoE.

102

Dense models. Transformer with no MoE layers.

Top-2 gating MoE. MoE models with top-2 gating [79, 49] for training.

Top-1 gating MoE (Switch Transformer). Switch Transformer [37, 71, 160] uses

top-1 gating to mitigate training instabilities.

5.4.3 Training Configurations

We use 8 A100 GPUs, each with 40 GB memory. Data and expert parallel is

used for distributed training. We distribute the experts evenly among all the

GPUs. In terms of hyperparameters and model architecture, we adopt the default

configurations established in the existing models [156, 77].

Model architecture. BERT-Base has 12 attention heads per layer. The hidden

size is 768 and the intermediate dimension is 3072. The Transformer model has

16 attention heads. The hidden size is 1024 and the intermediate dimension in

encoder and decoder layers are 8192 and 4096, respectively. BART-Large has 16

attention heads. The hidden size is 1024 and the intermediate dimension is 4096.

GPT-2 and DialoGPT-medium have 16 attention heads. The hidden size is 1024

and the intermediate dimension is 4096.

Hyperparameters. BERT-Base has a batch size of 24 and the learning rate is

0.00003. The maximum number of tokens for the translation model is 4096 with a

learning rate of 0.0005. The maximum number of tokens allowed for BART-Large

is set to 4096. The learning rate is 0.00001. The batch size of GPT-2 is 8 with a

learning rate of 0.00015. For DialoGPT-medium, the batch size and learning rate

are 64 and 0.0001.

MoE configurations. The parameter size of the FFN in each model is the same in

Baseline and MoE models and we set the number of FFNs (i.e. experts) to 16 for

all evaluated tasks. The coefficient of the load balancing loss is 0.01. No capacity

constraints are enabled so no tokens would be dropped. The expert parameters

are randomly initialized. We normalize the expert probability in adaptive gating

103

and set the threshold T to 0.1.

5.4.4 Overall Performance

We present the overall training and inference performance in Table 5.3.

Overall, adaptive gating achieves comparable performance to the baselines

while significantly reducing the training time even compared to top-1 gating.

This is because though top-1 gating maximizes the computation saving, it makes

training more difficult to converge to the same loss value, eventually leading to

slightly longer training time compared to top-2 gating in 4 out of 6 tasks we run.

An in-depth analysis of how adaptive gating works in connection to each task is

presented in Section 5.4.5.

104

Task Scheme Norm. Training Time Computation FLOPs Inference Performance

Sentiment analysis

Dense 0.88x 2.18G 0.912

Top-2 Gating 1x 3.28G 0.918

Top-1 Gating 0.99x 2.18G 0.902

(Accuracy) Adaptive Gating 0.77x 2.30G 0.919

En->De translation

Dense 0.87x 10.6G 40.9

Top-2 Gating 1x 15.9G 41.1

Top-1 Gating 1.04x 10.6G 39.5

(BLEU Score) Adaptive Gating 0.79x 11.5G 41.1

Question and Answer

Dense 0.84x 2.18G 75.7

Top-2 Gating 1x 3.27G 77.6

Top-1 Gating 1.07x 2.18G 75.5

(F1 Score) Adaptive Gating 0.86x 2.36G 77.4

Summarization

Dense 0.89x 79G 42.3

Top-2 Gating 1x 119G 43.4

Top-1 Gating 1.06x 79G 40.8

(ROUGE-1) Adaptive Gating 0.86x 87G 43.3

Text completion

Dense 0.84x 3.4T 16.3

Top-2 Gating 1x 4.9T 17.8

Top-1 Gating 1.14x 3.4T 16.5

(Perplexity) Adaptive Gating 0.89x 3.73T 17.5

Dialogue response

Dense 0.82x 3.4T 12.5

Top-2 Gating 1x 4.9T 13.4

Top-1 Gating 0.93x 3.4T 12.6

(Perplexity) Adaptive Gating 0.82x 3.76T 13.3

Table 5.3: Overall performance of adaptive gating and compared baselines in different
NLP tasks. We normalize the training time with reference to the performance of top-2
gating MoE. All the schemes in the same task converge to the same loss.

Sentiment analysis. Adaptive gating in MoE outperforms both Dense models

and top-2 gating MoE in all metrics. While the average computation FLOPs per

105

token is higher with adaptive gating compared to top-1 gating MoE, which repre-

sents the minimum possible FLOPs in the MoE structure, adaptive gating requires

less training time and achieves superior accuracy during the inference stage.

This is consistent across all the tasks. Notably, only 11.3% of the tokens in our

evaluation receive two experts, which is the lowest among all tasks. Compared

to top-2 gating, adaptive gating focuses on assigning more experts to tokens that

represent neutral opinions, allowing for a more comprehensive decision-making

process. Conversely, tokens expressing little or obvious sentiment are given less

attention without degrading accuracy.

Translation. Adaptive gating delivers the same performance with top-2 gat-

ing while reducing training time and FLOPs per token by 25.6% and 38.2%,

respectively. Notably, we observe that the gating network in adaptive gating

exhibits a particular focus on the complexity of sentence structures. Even tokens

that appear linguistically simple can involve two experts when they appear in

sentences with intricate structures and grammar. Overall, 25.6% of all trained

tokens are routed to two experts.

Question and Answer. The training time with adaptive gating is 85.7% that

of top-2 gating. Although its inference performance is slightly lower, it still

outperforms top-1 gating. Through our experiments (refer to Section 5.4.6), we

discover that adaptive gating achieves the best results when the threshold is set

to 0.2 for Question and Answer. The gating decision is influenced by both the

context and the specific question being asked. For this task 16.4% tokens receive

top-2 processing.

Summarization. Summarization is the most challenging task in our evaluation,

as it involves processing long and information-rich articles. Adaptive gating takes

11.8% less training time than top-2 gating. However, its inference performance

slightly lags behind. Particularly, in adaptive gating tokens selected for top-2

experts exhibit significant variations across different layers. We provide a more

106

detailed analysis of this observation in Section 5.4.5.

Text completion. We use a GPT-like decoder-only architecture for this task.

Adaptive gating achieves similar performance as top-2 gating and Dense models

while outperforming top-1 gating. When compared to top-2 gating, only 21.8%

tokens rely on two experts, resulting in a reduction of 23.8% in average com-

putation FLOPs per token. The selection of tokens utilizing two experts varies

considerably due to the diverse nature of the input.

Dialogue response. Dialogue response requires more nuanced processing com-

pared to simple text generation, as it involves generating responses in a targeted

role based on narrative input and dialogue history. The sparsity introduced by

MoE is advantageous for this task. All three MoE approaches outperform the

Dense model. Among all the tasks evaluated, dialogue response exhibits the

highest percentage, 23.4% of tokens routed to two experts, indicating the higher

utilization of the top-2 gating mechanism among all the tasks. Upon evaluating

the tokens, we observe that this task can be viewed as a combination of all the

other evaluated tasks.

5.4.5 Analysis and Insights

While it is intuitive to understand that some minor tokens (e.g., “a”, “the”, “is”)

only need top-1 expert to process, this does not fully explain how and why

adaptive gating works in different NLP tasks. Thus we analyze how the tokens

are processed in training with adaptive gating, and make quite a few interesting

observations that can help better answer this question. In a broader sense, we

believe our insights are also instrumental towards building better language

models.

Note that when BPE tokenizer is used, we aggregate the result by mapping

the tokens to the natural language word and perform analysis on the aggregated

statistics.

107

0 1 2 3 4 5 6 7 8 9 1011
Layer

0.00
0.05
0.10
0.15
0.20
0.25

To
p-

2
(%

)

(a) Sentiment analysis

0 1 2 3 4 5 6 7 8 9 1011
Layer

0.00
0.05
0.10
0.15
0.20
0.25

To
p-

2
(%

)

(b) En->De Translation

0 1 2 3 4 5 6 7 8 9 1011
Layer

0.00
0.05
0.10
0.15
0.20
0.25

To
p-

2
(%

)

(c) Question and Answer

0 2 4 6 8 10121416182022
Layer

0.10
0.15
0.20
0.25
0.30
0.35

To
p-

2
(%

)

(d) Summarization

0 2 4 6 8 10121416182022
Layer

0.10
0.15
0.20
0.25
0.30
0.35

To
p-

2
(%

)

(e) Text generation

0 2 4 6 8 10121416182022
Layer

0.10
0.15
0.20
0.25
0.30
0.35

To
p-

2
(%

)

(f) Dialogue response

Figure 5.2: Percentage of tokens computed by top-2 experts over all the tokens in each
layer when using adaptive gating in MoE.

Sentiment analysis. Sentiment analysis exhibits the lowest percentage of top-2

gating among all tasks, and the percentage is stable across layers (Figure 5.2a).

The top-2 gating mechanism focuses on two main types of input here. First,

it frequently selects tokens that express a more neutral opinion since they are

more difficult to classify (Table 5.4). Second, tokens associated with sarcastic

statements, double negatives, or conflicting opinions are also commonly routed

to two experts. Adaptive gating effectively identifies these tokens early on in the

model as they are relatively easy to extract, which explains the stable percentage

across layers. A special case is when the input does not explicitly convey any

sentiment. Adaptive gating tends to initially route all tokens to either the top-1

or top-2 experts and gradually narrows down to more informative tokens. A

108

typical instance of this is “as a dentist’s waiting room.”

Translation. We focus on English-to-German translation only. We examine

the top-2 gating results based on our understanding of the source sentences.

The distribution of the top-2 gating percentages varies between the encoder

and decoder layers, exhibiting a gradual decrease in the encoder layers and

an increase in the decoder layers (Figure 5.2b). From sampled tokens and the

adjusted data order in adaptive gating, we observe that tokens requiring two

experts are usually within the same sentence. This observation leads us to

infer that the complexity of sentence structure influences the gating results. In

Table 5.4, we present one sentence containing multiple clauses that are frequently

processed by the top-2 experts.

Question and Answer. The percentage of top-2 tokens in question and answer

tasks fluctuates across layers (Figure 5.2c). First, adaptive gating pays extra

attention to the question itself. Words listed in Table 5.4 are some common

examples. These tokens often either specify the scope of the question or pose

constraints to the answers. Second, in the context side, tokens routed to two

experts are closely related to the question in the input as well. For example,

asking a question about numbers and computations would result in top-2 gating

on the numbers and the objects those numbers refer to.

Summarization. In summarization, the percentage of tokens using two experts

decreases in both encoder and decoder layers (Figure 5.2d). Based on our

analysis of sampled tokens, we identify two patterns for tokens that are likely

to be routed to top-2 experts. First, tokens with multiple meanings that rely on

both themselves and the surrounding context for their ultimate interpretation.

They are often routed to two experts in the shallow layers. Second, pronoun

tokens, as understanding their referents is crucial for accurate summarization,

use two experts in the deeper layers. This pattern is particularly prevalent in this

task. Additionally, certain key tokens (e.g. “in conclusion”, “however”, “in all”)

109

that indicate the beginning the central idea or the main opinion of the context

are often sent to two experts together with the following tokens.

Text completion. Text completion differs from the previous tasks as it is a

decoder-only and auto-regressive task. The gating results in text completion

are influenced by the current prediction being generated. The focus of tokens

changes dynamically based on the current prediction. It is challenging to identify

specific types of tokens that consistently receive two experts. When predicting

a pronoun, for example, the focus shifts to the names of individuals. Similar

patterns can be observed for numbers and dates. Additionally, we find that the

percentage of tokens routed to two experts is linked to the length of the current

sequence. Longer sequences have a higher percentage of top-2 gating.

Dialogue response. Dialogue response, compared to text completion, requires

more understanding of the narrative input and the dialogue history. We find that

lots of effort are put into processing dialogue history. First, one key distinction is

that tokens with a conversational meaning occur much more frequently. These

words lack informative content but serve to express human-like sentiments, such

as gratitude and politeness. We infer that routing these tokens for two experts

indicates that there is a difference between the conversational usage and written

text and it is also critical to learn where and when these words should be used.

Second, given the nature of the dialogue, many conversations are based on

underlying assumptions and conditions. Related tokens are usually processed

with two tokens to improve the understanding of the context. For instance, the

dialogue example provided in Table 5.4 is built on top of a scenario assuming

that “Johnathan tells his parents that he is gay” and asks the model to answer

questions with this condition.

110

Task Top-2 gating tokens

Sentiment analysis realistic, thoroughly, handsome but unfulfilling, simply, is not the
worst movie of the year, generic

Translation I believe that anyone who has had the opportunity to visit Alge-
ria during recent months or years can make a better assessment
of what this terrible outbreak of terrorism means to the Algerian
people and, indeed, I believe that it would be to our credit if we
dealt with this issue in an urgent debate.

Question and Answer Which entity, who else, after what, Up until, who was blamed, in
terms of, after, Who’s death caused this protest?

Summarization Japanese actress Rinko Kikuchi walks Anjali Rao through the
streets of Tokyo. She stunned global cinema audiences with
her controversial and Oscar-nominated performance as a lonely
deaf girl in the film “Babel”. Rinko Kikuchi is one of Japan’s
hottest young actresses and models, recently working with Karl
Lagerfeld as the new face of Channel. Despite her success, she
remains an unconventional figure in Japan, at odds with the
traditional demure image of the Japanese woman and forging a
career on her own terms...

Text completion Harris announced he would be stepping down as rabbi in 2011,
and the synagogue hired Boris Dolin as his successor. Born and
raised in Oregon, Dolin had worked at Temple Beth Israel as a
teacher and youth group adviser from 1999 to 2001.

Dialogue response exactly, definitely, hmm, um, well, I guess, [Narrative] Johnathan
plans to tell his parents that he is gay. He feels anxious because
he doesn’t know they will react. He is worried that they will be
disappointed or even angry with him.

Table 5.4: Examples of tokens using top-2 experts in different tasks. Underlined tokens
use top-2 gating in a sequence.

5.4.6 Ablation Study

Threshold T in adaptive gating. We now conduct an ablation study on the

threshold T introduced in adaptive gating. Increasing the threshold value results

in a less sparse model, where more tokens are assigned to the top-2 gating

mechanism, subsequently increasing the computational FLOPs. Table 5.5 shows

the inference performance of different tasks when the threshold is increased from

0.05 to 0.5. When using a small threshold of 0.05, both the training time and

inference performance closely resemble those of top-1 gating MoE. On the other

111

hand, setting the threshold to 0.4 does not always lead to the same performance

as top-2 gating. Together with Table 5.3, we discover that threshold values of

0.1 and 0.2 often strike a favorable balance between training time and inference

performance.

Task
Norm. Training Time Inference Performance

0.05 0.2 0.3 0.4 0.05 0.2 0.3 0.4

Sentiment analysis 1.02x 0.77x 0.92x 1.01x 0.912 0.918 0.917 0.918
Translation 0.88x 0.83x 0.83x 0.88x 40.2 41.1 40.8 41.1
Question and Answer 0.92x 0.87x 0.93x 0.96x 74.3 77.6 77.6 77.6
Summarization 0.98x 1.02x 1.05x 1.04x 40.8 42.3 43.1 43.1
Text generation 0.95x 0.93x 0.99x 1.01x 16.6 17.2 17.4 17.4
Dialogue response 0.93x 0.91x 1.01x 1.01x 12.2 12.8 13.2 13.4

Table 5.5: Overall performance when the threshold T changes. Training time is nor-
malized with reference to top-2 gating MoE. We highlight the best one with the least
training time.

Curriculum learning. Essentially, we disable the data order adjustment before

each epoch and use the random data loader to feed the training set. We present

the performance degradation compared to the full-set adaptive gating in Table 5.6.

Since it is highly possible that there is at least one token that are routed to

top-2 experts, the step time of each iteration cannot achieve the same level of

reduction as the computation FLOPs. Consequently, the end-to-end training time

is significantly inflated, with an average increase of 13.7%. Additionally, the idea

of the curriculum also contributes to the improvement in inference performance.

The maximum drop is 0.21 in Question and Answer task when the data is fed

and trained in a random manner.

5.5 Limitation

Choice of k. Adaptive gating in MoE currently is limited to top-k gating, where

k can be either 1 or 2. This is built on the common practice in extensive prior

112

Task Training Time Inflation Inference Performance

Sentiment analysis 22% +0.00
Translation 14% -0.14
Question and Answer 9% -0.21
Summarization 14% -0.14
Text completion 12% -0.01
Dialogue response 11% -0.19

Table 5.6: Overall performance comparison of adaptive gating when data batch is not
adjusted.

work that top-2 gating shows a promissing resut in MoE. Further evaluation

is necessary to validate the performance of a wider range of k values. Our

experiments were conducted on a diverse set of NLP tasks and datasets, but

it is essential to note that the effectiveness and efficiency of adaptive MoE

may vary depending on the specific task characteristics. Different tasks may

exhibit distinct patterns and complexities, which can impact the performance and

generalizability of the proposed approach. Further investigation and evaluation

on a wider range of tasks would provide a more comprehensive understanding

of the limitations and applicability of adaptive MoE.

113

Conclusion

5.6 Conclusion

In this thesis, we have comprehensively reviewed the existing work on systems

for distributed DNN workloads and we have presented three research projects

that address the challenges in distributed DNN training and inference.

We have presented Lyra, an elastic GPU cluster scheduler for deep learn-

ing. The key idea is to exploit cluster-level elasticity by loaning idle inference

servers for training, and job-level elasticity by scaling jobs to better utilize the

dynamic resource pool. In designing and evaluating Lyra, we have addressed

new challenges in cluster management, by introducing heuristics to reduce job

preemption cost due to loan-reclaiming, and to minimize job completion time

when elastic jobs are presented.

We then introduced Lina, a new system that accelerates all-to-all in distributed

MoE. Through a systematic analysis, we build Lina upon two key ideas: first

to prioritize all-to-all over allreduce using tensor partitioning and pipelining

to improve its bandwidth in training, and second to dynamically balance the

workload with token-level expert selection pattern in inference. We implemented

Lina over DeepSpeed and performed extensive testbed evaluation using A100

GPUs and 100Gbps InfiniBand to show that Lina significantly improves training

efficiency and inference time.

We demonstrate the effectiveness and flexibility of adaptive gating in MoE

114

models for a wide range of natural language processing tasks. By dynamically

adjusting the number of experts based on token characteristics, we achieve

improved training efficiency without compromising inference performance. Ad-

ditionally, the integration of curriculum learning allows us to tackle the challenge

of varying execution times, thereby reducing training costs. Our research sheds

light on the trade-off between training efficiency and model performance in

sparse and dynamic MoE networks, offering valuable insights for the develop-

ment of more scalable and adaptable language models.

5.7 Future Work

Since LLM has become successful over the few years, the future work of this

thesis would follow such trend. We plan to build efficient infrastructure tailored

for LLM models.

Driven by the insight that today’s Large Language Models are typically

fine-tuned using diverse techniques, many of which employ parameter-efficient

fine-tuning (PEFT), we are met with an intriguing opportunity. PEFT is a practice

wherein a smaller, task-specific model is on top of a larger, pre-trained model,

thereby reaping the benefits of the foundational model’s extensive learning [122].

For instance, techniques like adapter layers [54] and LoRA [55] allow a model

to preserve the parameters of the pre-trained model while learning task-specific

patterns in the newly-added parameters. PEFT results in a multitude of fine-

tuned LLMs sharing parameters from the same foundational models, presenting

a unique set of benefits that can be leveraged to address the challenges previously

outlined. Our goal is to design and build a scalable inference system for LLMs,

which capitalizes on the advantages of PEFT. This system aims to address three

critical aspects: efficiency, performance, and maintainability:

• The system aims to optimize efficiency in terms of both storage and com-

115

putational resources. By leveraging PEFT, we can exploit the opportunities

to reduce storage size and improve compute efficiency through model

sharing, as multiple fine-tuned models will share parameters from the

same foundation models.

• The system aims to deliver high performance. PEFT allows models to be

naturally segregated into components, enabling each component to scale

individually. This modular nature allows the inference system to auto-scale

model components at a finer granularity, thereby adapting to traffic changes

quickly over time.

• The system aims to enhance maintainability by facilitating the efficient

evolution of models over time. Foundation models typically have long

development cycles and are costly to redeploy. In contrast, PEFT allows

fine-tuned models to redeploy only a small amount of parameters during

continual learning. This feature enables models to quickly adapt to chang-

ing data distributions over time, making the system more resilient and

adaptable.

116

References

[1] 2023 State of Data + AI. https://www.databricks.com/sites/

default/files/2023-06/databricks-2023-state-of-data-

report-06072023-v2_0.pdf.

[2] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael

Isard, et al. “{TensorFlow}: a system for {Large-Scale} machine learning”.

In: Proc. USENIX OSDI. 2016.

[3] AI ACROSS GOOGLE: PaLM 2. https://ai.google/discover/

palm2/.

[4] Raquel Aoki, Frederick Tung, and Gabriel L Oliveira. “Heterogeneous

multi-task learning with expert diversity”. In: IEEE/ACM Transactions on

Computational Biology and Bioinformatics 19.6 (2022), pp. 3093–3102.

[5] EO Arkhangelskaya and Sergei Igorevich Nikolenko. “Deep learning for

natural language processing: a survey”. In: Journal of Mathematical Sciences

(2023), pp. 1–50.

[6] Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott,

Sam Shleifer, Xi Victoria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth

Pasunuru, et al. “Efficient Large Scale Language Modeling with Mixtures

of Experts”. In: arXiv preprint arXiv:2112.10684 (2021).

117

https://www.databricks.com/sites/default/files/2023-06/databricks-2023-state-of-data-report-06072023-v2_0.pdf
https://www.databricks.com/sites/default/files/2023-06/databricks-2023-state-of-data-report-06072023-v2_0.pdf
https://www.databricks.com/sites/default/files/2023-06/databricks-2023-state-of-data-report-06072023-v2_0.pdf
https://ai.google/discover/palm2/
https://ai.google/discover/palm2/

[7] Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh, and

Dhabaleswar K Panda. “Efficient large message broadcast using NCCL

and CUDA-aware MPI for deep learning”. In: Proceedings of the 23rd

European MPI Users’ Group Meeting. 2016.

[8] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. “PipeSwitch: Fast

Pipelined Context Switching for Deep Learning Applications”. In: Proc. USENIX

OSDI. 2020.

[9] Mandeep Baines et al. FairScale: A general purpose modular PyTorch library

for high performance and large scale training. https://github.com/

facebookresearch/fairscale.

[10] Yixin Bao, Yanghua Peng, Yangrui Chen, and Chuan Wu. “Preemptive

all-reduce scheduling for expediting distributed DNN training”. In: IEEE

INFOCOM. 2020.

[11] Paul Barham et al. “Pathways: Asynchronous Distributed Dataflow for

ML”. In: Proc. MLSys. 2022.

[12] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup.

“Conditional computation in neural networks for faster models”. In: arXiv

preprint arXiv:1511.06297 (2015).

[13] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. “Estimating or

propagating gradients through stochastic neurons for conditional compu-

tation”. In: arXiv preprint arXiv:1308.3432 (2013).

[14] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston.

“Curriculum learning”. In: Proc. ICML. 2009.

[15] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish

Sastry, Amanda Askell, et al. “Language models are few-shot learners”.

In: Proc. NeurIPS 33 (2020), pp. 1877–1901.

118

https://github.com/facebookresearch/fairscale
https://github.com/facebookresearch/fairscale

[16] ChatGPT: Optimizing Language Models for Dialogue. https://openai.

com/blog/chatgpt/.

[17] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu, Nipun

Kwatra, and Srinidhi Viswanatha. “Balancing efficiency and fairness in

heterogeneous GPU clusters for deep learning”. In: Proc. ACM EuroSys.

2020.

[18] Chen Chen, Qizhen Weng, Wei Wang, Baochun Li, and Bo Li. “Semi-

dynamic load balancing: efficient distributed learning in non-dedicated

environments”. In: Proc. ACM SoCC. 2020.

[19] Tianlong Chen, Zhenyu Zhang, AJAY KUMAR JAISWAL, Shiwei Liu, and

Zhangyang Wang. “Sparse MoE as the New Dropout: Scaling Dense and

Self-Slimmable Transformers”. In: Proc. ICLR. 2023.

[20] Yangrui Chen, Yanghua Peng, Yixin Bao, Chuan Wu, Yibo Zhu, and

Chuanxiong Guo. “Elastic parameter server load distribution in deep

learning clusters”. In: Proc. ACM SoCC. 2020.

[21] Zitian Chen, Yikang Shen, Mingyu Ding, Zhenfang Chen, Hengshuang

Zhao, Erik G Learned-Miller, and Chuang Gan. “Mod-Squad: Designing

Mixtures of Experts As Modular Multi-Task Learners”. In: Proc. IEEE/CVF

CVPR. 2023, pp. 11828–11837.

[22] Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun

Patra, Saksham Singhal, Payal Bajaj, Xia Song, Xian-Ling Mao, et al. “On

the representation collapse of sparse mixture of experts”. In: Proc. NeurIPS

(2022).

[23] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalya-

naraman. “Project adam: Building an efficient and scalable deep learning

training system”. In: Proc. USENIX OSDI. 2014.

119

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

[24] Minsik Cho, Ulrich Finkler, David Kung, and Hillery Hunter. “BlueCon-

nect: Decomposing All-Reduce for Deep Learning on Heterogeneous

Network Hierarchy”. In: Proc. MLSys. 2019.

[25] Edward G. Coffman Jr., János Csirik, Gábor Galambos, Silvano Martello,

and Daniele Vigo. “Bin Packing Approximation Algorithms: Survey and

Classification”. In: Handbook of Combinatorial Optimization. Springer, 2013.

[26] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph

E Gonzalez, and Ion Stoica. “Clipper: A low-latency online prediction

serving system”. In: Proc. USENIX NSDI. 2017.

[27] CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit.

[28] Yong Dai, Duyu Tang, Liangxin Liu, Minghuan Tan, Cong Zhou, Jingquan

Wang, Zhangyin Feng, Fan Zhang, Xueyu Hu, and Shuming Shi. “One

model, multiple modalities: A sparsely activated approach for text, sound,

image, video and code”. In: arXiv preprint arXiv:2205.06126 (2022).

[29] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le,

and Ruslan Salakhutdinov. “Transformer-XL: Attentive language models

beyond a fixed-length context”. In: arXiv preprint arXiv:1901.02860 (2019).

[30] DeepSpeed. https://github.com/microsoft/DeepSpeed.

[31] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

“BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding”. In: CoRR (2018).

[32] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

“Bert: Pre-training of deep bidirectional transformers for language under-

standing”. In: (2018). arXiv: 1810.04805.

120

https://developer.nvidia.com/cuda-toolkit
https://github.com/microsoft/DeepSpeed
https://arxiv.org/abs/1810.04805

[33] Micah Dowty and Jeremy Sugerman. “GPU virtualization on VMware’s

hosted I/O architecture”. In: ACM SIGOPS Operating Systems Review 43.3

(2009), pp. 73–82.

[34] Nan Du et al. “GLaM: Efficient Scaling of Language Models with Mixture-

of-Experts”. In: PMLR. 2022.

[35] Samuel Eilon and IG Chowdhury. “Minimising waiting time variance in

the single machine problem”. In: Management Science (1977).

[36] Enwik8. http://prize.hutter1.net/.

[37] William Fedus, Barret Zoph, and Noam Shazeer. “Switch transformers:

Scaling to trillion parameter models with simple and efficient sparsity”.

In: arXiv preprint arXiv:2101.03961 (2021).

[38] Dror G Feitelson and Larry Rudolph. “Metrics and benchmarking for

parallel job scheduling”. In: Workshop on Job Scheduling Strategies for Parallel

Processing. 1998.

[39] Wikimedia Foundation. ACL 2019 Fourth Conference on Machine Translation

(WMT19), Shared Task: Machine Translation of News. url: http://www.

statmt.org/wmt19/translation-task.html.

[40] Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. “MegaBlocks:

Efficient Sparse Training with Mixture-of-Experts”. In: arXiv preprint

arXiv:2211.15841 (2022).

[41] Andrea Gesmundo and Jeff Dean. “munet: Evolving pretrained deep

neural networks into scalable auto-tuning multitask systems”. In: arXiv

preprint arXiv:2205.10937 (2022).

[42] Google Bard. https://bard.google.com/.

121

http://prize.hutter1.net/
http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html
https://bard.google.com/

[43] Google Falcon. https://cloud.google.com/blog/topics/systems/

introducing-falcon-a-reliable-low-latency-hardware-

transport.

[44] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. “Accu-

rate, large minibatch sgd: Training imagenet in 1 hour”. In: (2017). arXiv:

1706.02677.

[45] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janard-

han Kulkarni. “GRAPHENE: Packing and dependency-aware scheduling

for data-parallel clusters”. In: Proc. USENIX NSDI. 2016.

[46] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae

Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. “Tiresias: A GPU

Cluster Manager for Distributed Deep Learning”. In: Proc. USENIX NSDI.

2019.

[47] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann,

Ymir Vigfusson, and Jonathan Mace. “Serving DNNs like Clockwork:

Performance Predictability from the Bottom Up”. In: Proc. USENIX OSDI.

2020.

[48] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy Campbell. “TicTac:

Accelerating Distributed Deep Learning with Communication Schedul-

ing”. In: Proc. MLSys. Ed. by A. Talwalkar, V. Smith, and M. Zaharia.

2019.

[49] Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathi-

amoorthy, Yihua Chen, Rahul Mazumder, Lichan Hong, and Ed Chi.

“Dselect-k: Differentiable selection in the mixture of experts with applica-

tions to multi-task learning”. In: Proc. NeurIPS (2021).

122

https://cloud.google.com/blog/topics/systems/introducing-falcon-a-reliable-low-latency-hardware-transport
https://cloud.google.com/blog/topics/systems/introducing-falcon-a-reliable-low-latency-hardware-transport
https://cloud.google.com/blog/topics/systems/introducing-falcon-a-reliable-low-latency-hardware-transport
https://arxiv.org/abs/1706.02677

[50] Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang, Fuwen Luo, Shangfeng

Shi, and Qin Li. “FasterMoE: modeling and optimizing training of large-

scale dynamic pre-trained models”. In: Proc. ACM SIGPLAN PPoPP. 2022,

pp. 120–134.

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual

learning for image recognition”. In: Proc. IEEE/CVF CVPR. 2016.

[52] Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espe-

holt, Will Kay, Mustafa Suleyman, and Phil Blunsom. “Teaching Machines

to Read and Comprehend”. In: Proc. ACM NeurIPS. 2015.

[53] Horovod. Elastic Horovod. https://horovod.readthedocs.io/en/

latest/elastic_include.html. 2021.

[54] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone,

Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain

Gelly. “Parameter-efficient transfer learning for NLP”. In: Proc. ICML.

2019.

[55] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,

Shean Wang, Lu Wang, and Weizhu Chen. “Lora: Low-rank adaptation of

large language models”. In: arXiv preprint arXiv:2106.09685 (2021).

[56] Hanpeng Hu, Chenyu Jiang, Yuchen Zhong, Yanghua Peng, Chuan Wu,

Yibo Zhu, Haibin Lin, and Chuanxiong Guo. “dPRO: A Generic Perfor-

mance Diagnosis and Optimization Toolkit for Expediting Distributed

DNN Training”. In: Proc. MLSys. 2022.

[57] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen,

Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu,

et al. “Gpipe: Efficient training of giant neural networks using pipeline

parallelism”. In: Proc. NeurIPS (2019).

123

https://horovod.readthedocs.io/en/latest/elastic_include.html
https://horovod.readthedocs.io/en/latest/elastic_include.html

[58] Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu,

Zilong Wang, Rafael Salas, Jithin Jose, Prabhat Ram, et al. “Tutel: Adaptive

mixture-of-experts at scale”. In: Proc. MLSys (2023).

[59] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo Shin, and Ky-

oungSoo Park. “Elastic Resource Sharing for Distributed Deep Learning”.

In: Proc. USENIX NSDI. 2021.

[60] Folasade Olubusola Isinkaye, Yetunde O Folajimi, and Bolande Ade-

fowoke Ojokoh. “Recommendation systems: Principles, methods and

evaluation”. In: Egyptian informatics journal 16.3 (2015), pp. 261–273.

[61] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian,

Wencong Xiao, and Fan Yang. “Analysis of Large-Scale Multi-Tenant GPU

Clusters for DNN Training Workloads”. In: USENIX ATC. 2019.

[62] Xianyan Jia, Le Jiang, Ang Wang, Jie Zhang, Xinyuan Li, Wencong Xiao,

Yong Li, Zhen Zheng, Xiaoyong Liu, Wei Lin, et al. “Whale: Scaling deep

learning model training to the trillions”. In: arXiv preprint arXiv:2011.09208

(2020).

[63] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu

Zhou, Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. “Highly

scalable deep learning training system with mixed-precision: Training

imagenet in four minutes”. In: (2018). arXiv: 1807.11205.

[64] Zhihao Jia, Matei Zaharia, and Alex Aiken. “Beyond Data and Model

Parallelism for Deep Neural Networks.” In: Proc. MLSys (2019).

[65] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong

Guo. “A Unified Architecture for Accelerating Distributed DNN Training

in Heterogeneous GPU/CPU Clusters”. In: Proc. USENIX OSDI. 2020,

pp. 463–479.

124

https://arxiv.org/abs/1807.11205

[66] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong

Guo. “A Unified Architecture for Accelerating Distributed DNN Training

in Heterogeneous GPU/CPU Clusters”. In: Proc. USENIX OSDI. 2020.

[67] Tyler B Johnson, Pulkit Agrawal, Haijie Gu, and Carlos Guestrin. “AdaS-

cale SGD: A Scale-Invariant Algorithm for Distributed Training”. In:

(2019).

[68] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. “Rein-

forcement learning: A survey”. In: Journal of artificial intelligence research 4

(1996), pp. 237–285.

[69] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin

Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario

Amodei. “Scaling laws for neural language models”. In: arXiv preprint

arXiv:2001.08361 (2020).

[70] Hyunwoo Kim et al. “SODA: Million-scale Dialogue Distillation with

Social Commonsense Contextualization”. In: ArXiv abs/2212.10465 (2022).

[71] Young Jin Kim, Ammar Ahmad Awan, Alexandre Muzio, Andres Felipe

Cruz Salinas, Liyang Lu, Amr Hendy, Samyam Rajbhandari, Yuxiong

He, and Hany Hassan Awadalla. “Scalable and efficient moe training for

multitask multilingual models”. In: arXiv preprint arXiv:2109.10465 (2021).

[72] Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme

Ruiz, Basil Mustafa, Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil

Houlsby. “Sparse Upcycling: Training Mixture-of-Experts from Dense

Checkpoints”. In: arXiv preprint arXiv:2212.05055 (2022).

[73] Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme

Ruiz, Basil Mustafa, Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil

Houlsby. “Sparse Upcycling: Training Mixture-of-Experts from Dense

Checkpoints”. In: Proc. ICLR. 2023.

125

[74] Kubernetes. ElasticDL: A Kubernetes-native Deep Learning Framework. https:

//github.com/sql-machine-learning/elasticdl. 2021.

[75] Kubernetes. Kubernetes. https://kubernetes.io/. 2021.

[76] Kubernetes. Kubernetes Horizontal Pod Autoscaler. https://kubernetes.

io/docs/tasks/run-application/horizontal-pod-autoscale/.

2021.

[77] Yoohwan Kwon and Soo-Whan Chung. “MoLE: Mixture Of Language

Experts For Multi-Lingual Automatic Speech Recognition”. In: ICASSP.

2023.

[78] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning”. In:

Nature 521.7553 (2015), p. 436.

[79] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan

Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen.

“Gshard: Scaling giant models with conditional computation and auto-

matic sharding”. In: arXiv preprint arXiv:2006.16668 (2020).

[80] Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettle-

moyer. “BASE Layers: Simplifying Training of Large, Sparse Models”. In:

Proc. USENIX ICML. 2021.

[81] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrah-

man Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. “Bart:

Denoising sequence-to-sequence pre-training for natural language genera-

tion, translation, and comprehension”. In: arXiv preprint arXiv:1910.13461

(2019).

[82] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr

Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing

Su. “Scaling distributed machine learning with the parameter server”. In:

Proc. USENIX OSDI. 2014.

126

https://github.com/sql-machine-learning/elasticdl
https://github.com/sql-machine-learning/elasticdl
https://kubernetes.io/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

[83] Zhuohan Li et al. “AlpaServe: Statistical Multiplexing with Model Paral-

lelism for Deep Learning Serving”. In: Proc. USENIX OSDI. 2023.

[84] Hanxue Liang, Zhiwen Fan, Rishov Sarkar, Ziyu Jiang, Tianlong Chen,

Kai Zou, Yu Cheng, Cong Hao, and Zhangyang Wang. “M3ViT: Mixture-

of-Experts Vision Transformer for Efficient Multi-task Learning with

Model-Accelerator Co-design”. In: Proc. NeurIPS. 2022.

[85] Gangmuk Lim, Jeongseob Ahn, Wencong Xiao, Youngjin Kwon, and

Myeongjae Jeon. “Zico: Efficient GPU Memory Sharing for Concurrent

DNN Training”. In: USENIX ATC. 2021.

[86] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska. “Dynamic right-

sizing for power-proportional data centers”. In: Proc. IEEE INFOCOM.

2011.

[87] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan,

and Christos Kozyrakis. “Heracles: Improving resource efficiency at scale”.

In: Proc. ACM ISCA. 2015.

[88] Liang Luo, Peter West, Jacob Nelson, Arvind Krishnamurthy, and Luis

Ceze. “Plink: Discovering and exploiting locality for accelerated dis-

tributed training on the public cloud”. In: Proc. MLSys (2020).

[89] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H

Chi. “Modeling task relationships in multi-task learning with multi-gate

mixture-of-experts”. In: Proc. ACM SIGKDD. 2018.

[90] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew

Y. Ng, and Christopher Potts. “Learning Word Vectors for Sentiment

Analysis”. In: Proc. ACL. 2011.

[91] Kshiteej Mahajan, Ching-Hsiang Chu, Srinivas Sridharan, and Aditya

Akella. “Better Together: Jointly Optimizing {ML} Collective Scheduling

127

and Execution Planning using {SYNDICATE}”. In: Proc. USENIX NSDI.

2023.

[92] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius

Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis,

Victor Bittorf, et al. “Mlperf training benchmark”. In: (2019). arXiv: 1910.

01500.

[93] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher.

Pointer Sentinel Mixture Models. 2016. arXiv: 1609.07843.

[94] Hiroaki Mikami, Hisahiro Suganuma, Yoshiki Tanaka, Yuichi Kageyama,

et al. “Massively distributed SGD: ImageNet/ResNet-50 training in a

flash”. In: (2018). arXiv: 1811.05233.

[95] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. “Check-

Freq: Frequent, Fine-Grained DNN Checkpointing”. In: Proc. USENIX

FAST. 2021.

[96] Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni, and Vijay

Chidambaram. “Looking Beyond GPUs for DNN Scheduling on Multi-

Tenant Clusters”. In: Proc. USENIX OSDI. 2022.

[97] Davoud Mougouei, David MW Powers, and Asghar Moeini. “An integer

linear programming model for binary knapsack problem with dependent

item values”. In: Australasian Joint Conference on Artificial Intelligence. 2017.

[98] Ibrahim Naji. “TSATC: Twitter Sentiment Analysis Training Corpus”. In:

thinknook. 2012.

[99] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,

Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Za-

haria. “PipeDream: Generalized Pipeline Parallelism for DNN Training”.

In: Proc. ACM SOSP. 2019.

128

https://arxiv.org/abs/1910.01500
https://arxiv.org/abs/1910.01500
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1811.05233

[100] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phan-

ishayee, and Matei Zaharia. “Heterogeneity-Aware Cluster Scheduling

Policies for Deep Learning Workloads”. In: Proc. USENIX OSDI. 2020.

[101] Deepak Narayanan, Keshav Santhanam, Amar Phanishayee, and Matei

Zaharia. “Accelerating deep learning workloads through efficient multi-

model execution”. In: NeurIPS Workshop on Systems for Machine Learning.

2018.

[102] NCCL. https://github.com/NVIDIA/nccl.

[103] Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli, and Sergey

Edunov. “Facebook FAIR’s WMT19 News Translation Task Submission”.

In: Proc. of WMT. 2020.

[104] NVIDIA cuDNN. https://developer.nvidia.com/cudnn.

[105] NVIDIA DGX H100. https://www.nvidia.com/en- us/data-

center/dgx-h100/.

[106] Andrew Or, Haoyu Zhang, and Michael Freedman. “Resource elasticity

in distributed deep learning”. In: Proc. MLSys. 2020.

[107] Kay Ousterhout, Aurojit Panda, Joshua Rosen, Shivaram Venkataraman,

Reynold Xin, Sylvia Ratnasamy, Scott Shenker, and Ion Stoica. “The Case

for Tiny Tasks in Compute Clusters”. In: Proc. USENIX HotOS. 2013.

[108] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Heuristics

for vector bin packing. Microsoft Research Technical Report. Microsoft

Research, 2011.

[109] Jay H Park, Gyeongchan Yun, M Yi Chang, Nguyen T Nguyen, Seungmin

Lee, Jaesik Choi, Sam H Noh, and Young-ri Choi. “HetPipe: Enabling

Large DNN Training on (Whimpy) Heterogeneous GPU Clusters through

129

https://github.com/NVIDIA/nccl
https://developer.nvidia.com/cudnn
https://www.nvidia.com/en-us/data-center/dgx-h100/
https://www.nvidia.com/en-us/data-center/dgx-h100/

Integration of Pipelined Model Parallelism and Data Parallelism”. In:

Proc. USENIX ATC. 2020.

[110] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind

Kalaiah, Daya Khudia, James Law, Parth Malani, Andrey Malevich, Satish

Nadathur, et al. “Deep learning inference in facebook data centers: Char-

acterization, performance optimizations and hardware implications”. In:

(2018). arXiv: 1811.09886.

[111] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong

Guo. “Optimus: an efficient dynamic resource scheduler for deep learning

clusters”. In: Proc. ACM EuroSys. 2018.

[112] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan,

Chuan Wu, and Chuanxiong Guo. “A Generic Communication Scheduler

for Distributed DNN Training Acceleration”. In: Proc. ACM SOSP. 2019.

[113] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan,

Chuan Wu, and Chuanxiong Guo. “A generic communication scheduler

for distributed DNN training acceleration”. In: Proc. ACM SOSP. 2019.

[114] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James

Bradbury, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean.

“Efficiently scaling transformer inference”. In: Proc. MLSys (2023).

[115] Andrey Proskurin. DeepSpeed: Advancing MoE inference and training to

power next-generation AI scale. https://www.microsoft.com/en-

us/research/blog/deepspeed-advancing-moe-inference-

and-training-to-power-next-generation-ai-scale.

[116] PyTorch. https://pytorch.org.

[117] PyTorch. PyTorch Elastic. https://pytorch.org/elastic/0.2.

0rc1/distributed.html#module-torchelastic.distributed.

launch. 2021.

130

https://arxiv.org/abs/1811.09886
https://www.microsoft.com/en-us/research/blog/deepspeed-advancing-moe-inference-and-training-to-power-next-generation-ai-scale
https://www.microsoft.com/en-us/research/blog/deepspeed-advancing-moe-inference-and-training-to-power-next-generation-ai-scale
https://www.microsoft.com/en-us/research/blog/deepspeed-advancing-moe-inference-and-training-to-power-next-generation-ai-scale
https://pytorch.org
https://pytorch.org/elastic/0.2.0rc1/distributed.html#module-torchelastic.distributed.launch
https://pytorch.org/elastic/0.2.0rc1/distributed.html#module-torchelastic.distributed.launch
https://pytorch.org/elastic/0.2.0rc1/distributed.html#module-torchelastic.distributed.launch

[118] PyTorch Distributed Data Parallel. https : / / pytorch . org / docs /

stable/notes/ddp.html.

[119] PyTorch Profiler. https://pytorch.org/blog/pytorch-profiler-

1.9-released/.

[120] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger,

Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P. Xing. “Pollux:

Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning”.

In: Proc. USENIX OSDI. 2021.

[121] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and

Ilya Sutskever. “Language Models are Unsupervised Multitask Learners”.

In: (2019).

[122] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. “Exploring the lim-

its of transfer learning with a unified text-to-text transformer”. In: The

Journal of Machine Learning Research (2020).

[123] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. “Exploring the

Limits of Transfer Learning with a Unified Text-to-Text Transformer”. In:

Journal of Machine Learning Research (2020).

[124] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza

Yazdani Aminabadi, Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He.

“DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training

to Power Next-Generation AI Scale”. In: Proc. ICML. 2022.

[125] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.

“SQuAD: 100,000+ Questions for Machine Comprehension of Text”. In:

(2016). arXiv: 1606.05250.

131

https://pytorch.org/docs/stable/notes/ddp.html
https://pytorch.org/docs/stable/notes/ddp.html
https://pytorch.org/blog/pytorch-profiler-1.9-released/
https://pytorch.org/blog/pytorch-profiler-1.9-released/
https://arxiv.org/abs/1606.05250

[126] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,

Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. “ZeRO-

Offload: Democratizing Billion-Scale Model Training”. In: Proc. USENIX

ATC. 2021.

[127] Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. “Hash layers

for large sparse models”. In: Proc. NeurIPS (2021).

[128] Abigail See, Peter J. Liu, and Christopher D. Manning. “Get To The Point:

Summarization with Pointer-Generator Networks”. In: Proc. ACL. 2017.

[129] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki, Madan

Musuvathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi, and Rachee

Singh. “{TACCL}: Guiding Collective Algorithm Synthesis using Com-

munication Sketches”. In: Proc. USENIX NSDI. 2023.

[130] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc

Le, Geoffrey Hinton, and Jeff Dean. “Outrageously large neural net-

works: The sparsely-gated mixture-of-experts layer”. In: arXiv preprint

arXiv:1701.06538 (2017).

[131] Noam Shazeer et al. “Mesh-TensorFlow: Deep Learning for Supercomput-

ers”. In: Proc. ACM NeurIPS. 2018.

[132] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,

Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. “Nexus:

A GPU Cluster Engine for Accelerating DNN-Based Video Analysis”. In:

Proc. ACM SOSP. 2019.

[133] Liang Shen, Zhihua Wu, WeiBao Gong, Hongxiang Hao, Yangfan Bai,

HuaChao Wu, Xinxuan Wu, Haoyi Xiong, Dianhai Yu, and Yanjun Ma.

“SE-MoE: A Scalable and Efficient Mixture-of-Experts Distributed Training

and Inference System”. In: arXiv preprint arXiv:2205.10034 (2022).

132

[134] Sheng Shen, Zhewei Yao, Chunyuan Li, Trevor Darrell, Kurt Keutzer, and

Yuxiong He. “Scaling Vision-Language Models with Sparse Mixture of

Experts”. In: arXiv preprint arXiv:2303.07226 (2023).

[135] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,

Jared Casper, and Bryan Catanzaro. “Megatron-lm: Training multi-billion

parameter language models using model parallelism”. In: (2019). arXiv:

1909.08053.

[136] Dharma Shukla, Muthian Sivathanu, Srinidhi Viswanatha, Bhargav Gula-

vani, Rimma Nehme, Amey Agrawal, Chen Chen, Nipun Kwatra, Ra-

machandran Ramjee, Pankaj Sharma, et al. “Singularity: Planet-Scale,

Preemptible, Elastic Scheduling of AI Workloads”. In: (2022). arXiv: 1403.

1349.

[137] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-

works for large-scale image recognition”. In: (2014). arXiv: 1409.1556.

[138] Prabhakant Sinha and Andris A Zoltners. The multiple-choice knapsack

problem. Tech. rep. Operations, 1979.

[139] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D.

Manning, Andrew Ng, and Christopher Potts. “Recursive Deep Models for

Semantic Compositionality Over a Sentiment Treebank”. In: Proc. EMNLP.

2013.

[140] Chunqiang Tang et al. “Twine: A Unified Cluster Management System

for Shared Infrastructure”. In: Proc. USENIX OSDI. 2020.

[141] TensorRT. https://github.com/NVIDIA/TensorRT.

[142] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-

Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric

Hambro, Faisal Azhar, et al. “Llama: Open and efficient foundation

language models”. In: arXiv preprint arXiv:2302.13971 (2023).

133

https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1403.1349
https://arxiv.org/abs/1403.1349
https://arxiv.org/abs/1409.1556
https://github.com/NVIDIA/TensorRT

[143] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch, Mor

Harchol-Balter, and Gregory R Ganger. “TetriSched: global reschedul-

ing with adaptive plan-ahead in dynamic heterogeneous clusters”. In:

Proc. ACM EuroSys. 2016.

[144] Tutel. https://github.com/microsoft/tutel.

[145] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is

all you need”. In: Proc. NeurIPS 30 (2017).

[146] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agar-

wal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh

Shah, Siddharth Seth, et al. “Apache hadoop yarn: Yet another resource

negotiator”. In: Proc. ACM SoCC. 2013.

[147] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-

heimer, Eric Tune, and John Wilkes. “Large-scale cluster management at

Google with Borg”. In: Proc. ACM EuroSys. 2015.

[148] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, Efty-

chios Protopapadakis, et al. “Deep learning for computer vision: A brief

review”. In: Computational intelligence and neuroscience 2018 (2018).

[149] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Nikhil De-

vanur, Jorgen Thelin, and Ion Stoica. “Blink: Fast and Generic Collectives

for Distributed ML”. In: Proc. MLSys. 2020.

[150] Guanhua Wang, Kehan Wang, Kenan Jiang, Xiangjun Li, and Ion Stoica.

“Wavelet: Efficient DNN training with tick-tock scheduling”. In: Proc. ML-

Sys (2021).

[151] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhi-

hao Jia, Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch. “{TopoOpt}:

134

https://github.com/microsoft/tutel

Co-optimizing Network Topology and Parallelization Strategy for Dis-

tributed Training Jobs”. In: Proc. USENIX NSDI. 2023.

[152] Xin Wang, Yudong Chen, and Wenwu Zhu. “A survey on curriculum

learning”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence

(2021).

[153] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian

Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler,

et al. “Emergent abilities of large language models”. In: arXiv preprint

arXiv:2206.07682 (2022).

[154] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian

He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. “MLaaS in the Wild:

Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU

Clusters”. In: Proc. USENIX NSDI. 2022.

[155] WMT 19. https://github.com/facebookresearch/fairseq/

blob/main/examples/wmt19/README.md.

[156] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language

Processing”. In: Proc. EMNLP. 2020.

[157] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad

Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus

Macherey, et al. “Google’s neural machine translation system: Bridging

the gap between human and machine translation”. In: (2016). arXiv:

1609.08144.

[158] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Si-

vathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu

Zhao, Quanlu Zhang, et al. “Gandiva: Introspective cluster scheduling for

deep learning”. In: Proc. USENIX OSDI. 2018.

135

https://github.com/facebookresearch/fairseq/blob/main/examples/wmt19/README.md
https://github.com/facebookresearch/fairseq/blob/main/examples/wmt19/README.md
https://arxiv.org/abs/1609.08144

[159] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li,

Yihui Feng, Wei Lin, and Yangqing Jia. “AntMan: Dynamic Scaling on

GPU Clusters for Deep Learning”. In: Proc. USENIX OSDI. 2020.

[160] Fuzhao Xue, Xiaoxin He, Xiaozhe Ren, Yuxuan Lou, and Yang You. “One

student knows all experts know: From sparse to dense”. In: arXiv preprint

arXiv:2201.10890 (2022).

[161] Feng Yan, Olatunji Ruwase, Yuxiong He, and Trishul Chilimbi. “Perfor-

mance modeling and scalability optimization of distributed deep learning

systems”. In: Proc. ACM SIGKDD. 2015.

[162] Zhewei Yao, Xiaoxia Wu, Conglong Li, Connor Holmes, Minjia Zhang,

Cheng Li, and Yuxiong He. “Random-LTD: Random and Layerwise Token

Dropping Brings Efficient Training for Large-scale Transformers”. In:

arXiv preprint arXiv:2211.11586 (2022).

[163] Xiaodong Yi, Shiwei Zhang, Ziyue Luo, Guoping Long, Lansong Diao,

Chuan Wu, Zhen Zheng, Jun Yang, and Wei Lin. “Optimizing distributed

training deployment in heterogeneous GPU clusters”. In: Proc. CoNEXT.

2020.

[164] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh

Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui

Hsieh. “Large batch optimization for deep learning: Training bert in 76

minutes”. In: (2019). arXiv: 1904.00962.

[165] Peifeng Yu and Mosharaf Chowdhury. “Salus: Fine-grained gpu sharing

primitives for deep learning applications”. In: Proc. MLSys (2020).

[166] Mingshu Zhai, Jiaao He, Zixuan Ma, Zan Zong, Runqing Zhang, and

Jidong Zhai. “SmartMoE: Efficiently Training Sparsely-Activated Models

through Combining Offline and Online Parallelization”. In: USENIX ATC.

2023.

136

https://arxiv.org/abs/1904.00962

[167] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang,

Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing. “Poseidon: An

efficient communication architecture for distributed deep learning on

GPU clusters”. In: Proc. USENIX ATC. 2017.

[168] Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett,

Xiang Gao, Jianfeng Gao, Jingjing Liu, and Bill Dolan. “DialoGPT: Large-

Scale Generative Pre-training for Conversational Response Generation”.

In: ACL, system demonstration. 2020.

[169] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie Xu.

“Fuxi: A Fault-Tolerant Resource Management and Job Scheduling System

at Internet Scale”. In: Proc. VLDB Endow. 2014.

[170] Hanyu Zhao et al. “HiveD: Sharing a GPU Cluster for Deep Learning

with Guarantees”. In: Proc. USENIX OSDI. 2020.

[171] Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu, Xuanzhe Liu,

and Xin Jin. “Multi-resource interleaving for deep learning training”. In:

Proc. ACM SIGCOMM. 2022.

[172] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng

Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P

Xing, et al. “Alpa: Automating Inter-and Intra-Operator Parallelism for

Distributed Deep Learning”. In: Proc. USENIX OSDI. 2022.

[173] Pengfei Zheng, Rui Pan, Tarannum Khan, Shivaram Venkataraman, and

Aditya Akella. “Shockwave: Fair and Efficient Cluster Scheduling for

Dynamic Adaptation in Machine Learning”. In: Proc. USENIX NSDI.

2023.

[174] Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao,

Andrew M Dai, Quoc V Le, James Laudon, et al. “Mixture-of-experts with

expert choice routing”. In: Proc. NeurIPS (2022).

137

[175] Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. “Daydream:

Accurately Estimating the Efficacy of Optimizations for DNN Training”.

In: Proc. USENIX ATC. 2020.

[176] Timothy Zhu, Alexey Tumanov, Michael A Kozuch, Mor Harchol-Balter,

and Gregory R Ganger. “Prioritymeister: Tail latency qos for shared

networked storage”. In: Proc. ACM SoCC. 2014.

[177] Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff

Dean, Noam Shazeer, and William Fedus. “Designing Effective Sparse

Expert Models”. In: arXiv preprint arXiv:2202.08906 (2022).

[178] Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei

Zhang, Tuo Zhao, and Jianfeng Gao. “Taming sparsely activated trans-

former with stochastic experts”. In: arXiv preprint arXiv:2110.04260 (2021).

138

List of Publications

[1] Jiamin Li, Qiang Su, Yitao Yang, Yimin Jiang, Cong Wang, and Hong

Xu. “Adaptive Gating in Mixture-of-Experts based Language Models”. In:

arXiv preprint arXiv:2310.07188 (2023).

[2] Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and Hong Xu. “Accelerat-

ing Distributed MoE Training and Inference with Lina”. In: 2023 USENIX

Annual Technical Conference (USENIX ATC 23). 2023, pp. 945–959.

[3] Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong Guo, and Cong

Wang. “Lyra: Elastic scheduling for deep learning clusters”. In: Proceedings

of the Eighteenth European Conference on Computer Systems (ACM EuroSys

23). 2023, pp. 835–850.

[4] Libin Liu, Hong Xu, Zhixiong Niu, Jingzong Li, Wei Zhang, Peng Wang,

Jiamin Li, Jason Chun Xue, and Cong Wang. “ScaleFlux: Efficient Stateful

Scaling in NFV”. In: IEEE Transactions on Parallel and Distributed Systems

(TPDS) 33.12 (2022), pp. 4801–4817.

[5] Kaiwei Mo, Chen Chen, Jiamin Li, Hong Xu, and Chun Jason Xue. “Two-

Dimensional Learning Rate Decay: Towards Accurate Federated Learning

with Non-IID Data”. In: 2021 International Joint Conference on Neural Net-

works (IJCNN). IEEE. 2021, pp. 1–7.

139

[6] Libin Liu, Chengxi Gao, Peng Wang, Hongming Huang, Jiamin Li, Hong

Xu, and Wei Zhang. “Bottleneck-aware non-clairvoyant coflow scheduling

with Fai”. In: IEEE Transactions on Cloud Computing (TCC) (2021).

140

	Abstract
	Qualifying Panel and Examination Panel
	List of Tables
	List of Figures
	Acknowledgments
	Introduction
	Distributed Deep Neural Networks
	Summary of Contributions
	Thesis Organization

	Background & Literature Review
	Distributed DNN Training and Inference
	Parallelism Strategies

	Bottlenecks in Distributed DNN
	Communication Overhead
	Memory Consumption

	GPU Cluster Scheduling
	Adaptive and Sparse Computation
	Algorithms
	Systems

	Lyra: Elastic Scheduling for Deep Learning Clusters
	Introduction
	Motivation
	Why Capacity Loaning?
	Elastic Scaling for the Full Potential
	Existing Cluster Schedulers

	Design Overview
	Capacity Loaning and Reclaiming
	Job Scheduling
	Challenge of Elasticity
	Two-Phase Resource Allocation
	Worker Placement

	Implementation
	Evaluation
	Setup
	Overall Performance in Simulation
	Deep-Dive: Capacity Loaning
	Deep-Dive: Job Scheduling
	Testbed Results

	Discussion
	Related Work

	Lina: Accelerating Distributed MoE Training and Inference
	Introduction
	Background and Motivation
	A Primer on MoE
	Bottleneck Analysis

	Design Overview
	Prioritizing All-to-All Training
	Design Challenge
	Tensor Partitioning and Micro-Ops

	Scheduling Resources in Inference
	Design Challenge
	Popularity based Scheduling

	Implementation
	Training
	Inference

	Evaluation
	Setup
	Training
	Overall Performance
	Communication Scheduler

	Inference
	Resource Scheduler
	Popularity Estimation

	Discussion
	Related Work

	Adaptive Gating in MoE-based Language Models
	Introduction
	Background
	Mixture-of-Experts

	Design
	Adaptive Gating in MoE
	Batching

	Evaluation
	Tasks and Models
	Baselines
	Training Configurations
	Overall Performance
	Analysis and Insights
	Ablation Study

	Limitation

	Conclusion
	Conclusion
	Future Work

	References
	List of Publications

