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Mixture-of-Experts (MoE): a popular way to curb the computation 
cost of deep learning models. 

Introduction

Motivation

Design

[MoE in language models] MoE layer replaces the FFN layer in Transformer. It 
consists of multiple FFNs as experts, and a gating network. The gating network 
dispatches the token to a small number of experts (top-1, top-2).
[Distributed MoE] Data parallelism and expert parallelism are applied. It allocates 
one unique GPU for each expert and use all-to-all to exchange tokens. 

[Synchronous all-to-all with large data transfer]
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[Prolonged all-to-all with allreduce] In the 
backward pass, all-to-all and allreduce control
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[Skewed expert popularity] The token-to-
expert distribution in inference is purely 
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Lina prioritizes all-to-all and avoids concurrent 
execution with allreduce with priority scheduling. 

[Tensor partitioning] Partition each gradient tensor into 
equal-sized small chunks. 
[Pipelining micro-ops] Pipeline the expert computation 
and all-to-all micro-ops, because the FFN computation is 
in token granularity. 

Lina replicates popular experts on proportionally 
more devices to balance the workload.  

[Pattern in expert selection] 
Tokens that have selected 
the same expert in layer i 
tend to select the same 
expert again in layer i + 1.� 	 
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Transformer-XL GPT-2

Lina reduces the training step time by up to 
1.73x.

Lina reduces the 95%ile inference time by an 
average of 1.63x  
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Transformer-XL BERT
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their own process group and 
overlap, they contend for the 
network bandwidth and their 
completion times are severely 
prolonged.

workload-driven. Expert popularity is highly skewed in 
sharp contrast to training.  

74.9% of the running time 
of one MoE layer.  
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[Two-phase scheduling] 
a. Resource scheduling based on estimated popularity 

•  Estimate with patterns profiled during training 
b. Low-overhead fine-tuning on actual routing decision

	 � � �

�������

	�


�

��

��

�
��
��
���

�

	�
	

	�
	��
	�	

��
 �
���

�
�

�����
����������� �

Why is all-to-all the bottleneck in distributed MoE? 

How to know the expert popularity a prior? 


