
workload-driven and highly skewed in sharp contrast 
to training. 
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Mixture-of-Experts (MoE): a popular way to curb the computation cost of deep learning models.
Introduction

Design

[MoE in language models] MoE layer replaces the FFN layer in Transformer. It consists of multiple FFNs as experts, and a 
gating network. The gating network dispatches the token to a small number of experts (top-1, top-2).

[Distributed MoE] Data parallelism and expert parallelism are applied. It allocates one unique GPU for each expert and 
use all-to-all to exchange tokens.


[Synchronous all-to-all with large data transfer]
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In the backward pass, all-to-all and allreduce control their own 
process group and overlap, they contend for the network 
bandwidth and their completion times are severely prolonged. � � �� ��
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[Skewed expert popularity] Token-to-
expert distribution in inference is purely
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Lina prioritizes all-to-all and avoids concurrent execution with allreduce with 
priority scheduling.


[Tensor partitioning] Partition each gradient tensor into equal-sized small chunks.


[Pipelining micro-ops] Pipeline the expert computation and all-to-all micro-ops, 
because the FFN computation is in token granularity.


Lina replicates popular experts on proportionally more devices to balance the 
workload. 


[Pattern in expert selection] Tokens that have 
selected the same expert in layer i tend to select 
the same expert again in layer i + 1.
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Transformer-XL GPT-2

Reduce the 95%ile inference time by ~1.63x 
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Transformer-XL BERT
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74.9% of the running 
time of one MoE layer. 


[Two-phase scheduling]

a. Resource scheduling based on estimated popularity


•  Estimate with patterns profiled during training

b. Low-overhead fine-tuning on actual routing decision
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How to know the expert popularity a prior?


 vAll-to-all is the bottleneck in distributed MoE. But why?
Motivation
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[Prolonged all-to-all with allreduce]
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Lyra: Elastic Scheduling for Deep Learning Clusters 
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Introduction

Evaluation

System Architecture

[Separate management of training and inference cluster.]


Diurnal pattern: ~40% cluster utilisation
 Long queuing: ~10,000s (95%ile)


Inference requires less computation and GPU memory than training, therefore 
using weaker GPUs like Nvidia T4, with a fraction of the resources of the training 
GPUs, such as Nvidia V100 and A100. 


[Elastic scaling of distributed training jobs.]


Jobs can take a variable number of workers 
according to resource availability. One can 
even adjust the number of workers on-the-fly 
when the job is running. 


[Limited elasticity] Some model families enjoy 
a linear scaling efficiency within a range.


∼5% of all jobs (account for 36% of training 
cluster resources)


[Capacity Loaning] Exploit the unused inference 
resources to run training jobs temporarily, i.e. 
loaning inference capacity for training. 


Capacity Loaning Elastic Scaling
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[Elastic Scaling] Training jobs can dynamically scale 
out to use more GPUs to accelerate training and 
scale in to free some servers without high-overhead 
preemptions.
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Which on-loan servers should be reclaimed to minimise 
preemptions?

Job Co-hosted 

by # of servers

Per Server Value

a 2 0.5
b 1 1
c 2 0.5
d 2 0.5

Job placement is usually messy 
and servers have inter-dependency 
when co-hosting a job.

Naively selecting servers leads to 
unnecessary preemption.

For a 2-server reclaim request…

[Knapsack with dependent item values]
A new value definition: sum of job’s server fraction

a. Greedily selects the 
lowest-value server

b. Preempt jobs & reclaim 
the server

c. Update the values

Cluster Capacity: 8 
Job wmin wmax Min. running time

A 2 6 50

B 2 6 20

Job wmin wmax Min. running time

A 2 3 100

B 2 6 20

[Two-phase resource allocation]

a. Prioritise Base Demand SJF to 

minimise queuing time,

b. Allocate the remaining 

resources to fulfill the Flexible 
Demand to minimise running 
time.

Elastic job = Base (first-class citizen) + Flexible Demand

Multiple-choice Knapsack problem

Group Item Weight Value

A 1 2 50

B

1 1 20

2 2 30

3 3 36

4 4 40

Sol.
Initial Allocation JCT Average 

JCTA B A B

1 6 2 50 53.33 51.67

2 2 6 63.33 20 41.67

3 4 4 60 30 45

Sol.
Initial Allocation JCT Average 

JCTA B A B

1 3 5 100 24 62

2 2 6 106.67 20 63.33

Shortest-job-first is not always optimal.

Efficient Scheduling of Distributed DNN Workloads

Utilisation of on-loan servers: ~93%

Avg. Queuing time: 

1.52x -> 1.67x -> 2.66x

Avg. JCT: 

1.48x -> 1.59x ->  1.87x

Reduce the training step time by 1.73x.


