Adaptive Gating in Mixture-of-Experts based Language Models

Jiamin Li¹, Qiang Su¹, Yitao Yang², Yimin Jiang, Cong Wang¹, Hong Xu² ¹City University of Hong Kong, ²The Chinese University of Hong Kong

香港城市大學 City University of Hong Kong

港中文大學 香 The Chinese University of Hong Kong

EMNLP 2023

Background

Figure credit to Anatomical and Functional Plasticity in Early Blind Individuals and the Mixture of Experts Architecture

MoE architecture An ensemble of experts.

Background

- <u>Sparsely-activated</u> MoE: each input selects just a few (1 or 2) experts for processing
- Benefit: sub-linear scaling of FLOPS with model size

Figure credit to Anatomical and Functional Plasticity in Early Blind Individuals and the Mixture of Experts Architecture

MoE architecture An ensemble of experts.

Background

- <u>Sparsely-activated</u> MoE: each input selects just a few (1 or 2) experts for processing
- Benefit: sub-linear scaling of FLOPS with model size

Figure credit to Anatomical and Functional Plasticity in Early Blind Individuals and the Mixture of Experts Architecture

MoE architecture An ensemble of experts.

Massive model parameters with constant computation cost.

Potential of MoE in Transformer Models

- GLaM by Google
 - GLaM outperforms GPT-3 on 29 tasks

- DeepSpeed MoE models
 - Model quality: 6.7B-parameter dense = 1.3B-parameter MoE - 128
 - Training compute reduction of 5x

Figure credit to GLaM and DeepSpeed MoE.

		GPT-3	GLaM	relative
cost	FLOPs / token (G) Train energy (MWh)	350 1287	180 456	-48.6% -64.6%
accuracy on average	Zero-shot One-shot Few-shot	56.9 61.6 65.2	62.7 65.5 68.1	+10.2% +6.3% +4.4%

3

• Existing MoE models, adopts a fixed gating policy (i.e. Top-2 gating in training).

Softmax activations retrieved from MoE gate of four tokens.

Existing MoE models, adopts a fixed gating policy (i.e. Top-2 gating in training).

Softmax activations retrieved from MoE gate of four tokens.

Existing MoE models, adopts a fixed gating policy (i.e. Top-2 gating in training).

Softmax activations retrieved from MoE gate of four tokens.

Significantly-biased distribution accounts for at least 55% of all the tokens

Existing MoE models, adopts a fixed gating policy (i.e. Top-2 gating in training).

Significantly-biased distribution accounts for at least 55% of all the tokens

- MoE experts specialize in different linguistic aspects.
- Many tokens can be effectively handled by a single expert during the training stage

Existing MoE models, adopts a fixed gating policy (i.e. Top-2 gating in training).

Softmax activations retrieved from MoE gate of four tokens.

 Control the number of experts hand time

• Control the number of experts handling each token to reduce training step

Control the number of experts hand time

Activation(Top-1 Expert) - Activation(Top-2 Expert) > **T**

• Control the number of experts handling each token to reduce training step

Control the number of experts hand time

Activation(Top-1 Expert) - Activation(Top-2 Expert) > **T**

• Control the number of experts handling each token to reduce training step

Route to Top-1experts

time

Activation(Top-1 Expert) - Activation(Top-2 Expert) > **T**

gating decisions.

Control the number of experts handling each token to reduce training step

Route to Top-1experts

Load balancing loss: impose the soft load balancing constraints on the top-1

 $L_i = E_i \sum_{e \in E} f_e^1 p_e$

time

Activation(Top-1 Expert) - Activation(Top-2 Expert) > **T**

gating decisions.

• Control the number of experts handling each token to reduce training step

Route to Top-1experts

Load balancing loss: impose the soft load balancing constraints on the top-1

 $L_i = E_i \sum_{e \in E} f_e^1 p_e$

Gate	Norm. Computation	Norm. MoE Layer Running Time
Top-1	0.5	0.67
Adaptive (80% Top-1)	0.6x	0.76x
Adaptive (50% Top-1)	0.75x	0.92x
Adaptive (20% Top-1)	0.9x	0.97x

• Training step ti

ime cannot enj	Qyrnt. Censpatation	reduction ages Running mp utation
Top-1	0.5	0.67
Adaptive (80% Top-1)	0.6x	0.76x
Adaptive (50% Top-1)	0.75x	0.92x
Adaptive (20% Top-1)	0.9x	0.97x

• Training step t

yrnt. Censpatatio	a raduation again and the providence of the prov
0.5	0.67
0.6x	0.76x
0.75x	0.92x
0.9x	0.97x
	O.5 0.6x 0.75x 0.9x

- the Attention layer.
 - MoE expert -> single tokens
 - Attention layer -> complete sequence
- Training step time cannot enjoy the same reduction as in computation.

Mismatch in the data processing granularity between the MoE experts and

Curriculum Learning

- Mismatch in the data processing granularity between the MoE experts and the Attention layer.
 - MoE expert -> single tokens
 - Attention layer -> complete sequence
- Training step time cannot enjoy the same reduction as in computation.

Curriculum Learning

- the Attention layer.
 - MoE expert -> single tokens
 - Attention layer -> complete sequence
- Training step time cannot enjoy the same reduction as in computation.
- Process <u>easier</u> sequences at the initial stages.
- The number of experts required by each token can be an indicator of the token complexity.
- Complexity vector of a sequence: C_d

Mismatch in the data processing granularity between the MoE experts and

$$= [r_0^d, r_1^d, \dots r_L^d]$$

Task	Dataset	Model	Architecture
Sentiment analysis	SST-2 (Socher et al., 2013)	BERT-Base (Devlin et al., 2018)	12-layer encoder
Translation	WMT19 (De->En) (Foundation)	FSMT (Ng et al., 2020)	6-layer encoder, 6-layer decoder
Question and Answer	SQuAD (Rajpurkar et al., 2016)	BERT-Base (Devlin et al., 2018)	12-layer encoder
Summarization	CNN/Daily Mail (Hermann et al., 2015; See et al., 2017)	BART-Large (Lewis et al., 2019)	12-layer encoder, 12-layer decoder
Text generation	wikitext (Merity et al., 2016)	GPT-2 (Radford et al., 2019)	24-layer decoder
Dialogue response	SODA (Kim et al., 2022)	DialoGPT-medium (Zhang et al., 2020)	24-layer decoder

Testbed

- 8 A100 GPUs, each with 40 GB memory.
- Data and expert parallel is used for distributed training.
- In terms of hyperparameters and model architecture, we adopt the default configurations established in the existing models

About ~25% of the tokens are routed to two experts.

Task	Scheme	Norm. Training Time	Computation FLOPs	Inference Performance	
	Dense	0.88x	2.18G	0.912	
Sentiment analysis	Top-2 Gating	1x	3.28G	0.918	
	Top-1 Gating	0.99x	2.18G	0.902	
(Accuracy)	Adaptive Gating	0.77x	2.30G	0.919	
	Dense	0.87x	10.6G	40.9	
En->De translation	Top-2 Gating	1x	15.9G	41.1	
	Top-1 Gating	1.04x	10.6G	39.5	
(BLEU Score)	Adaptive Gating	0.79x	11. 5 G	41.1	
	Dense	0.84x	2.18G	75.7	
Question and Answer	Top-2 Gating	1 x	3.27G	77.6	Adaptive gating reduces at mos
	Top-1 Gating	1.07x	2.18G	75.5	raaptive gating reduces at mos
(F1 Score)	Adaptive Gating	0.86x	2.36G	77.4	22 5% training time while
	Dense	0.89x	79G	42.3	
Summarization	Top-2 Gating	1 x	11 9G	43.4	maintaining inforance quality
	Top-1 Gating	1.06x	79G	40.8	mannaning interence quality.
(ROUGE-1)	Adaptive Gating	0.86x	87G	43.3	
	Dense	0.84x	3.4T	16.3	
Text completion	Top-2 Gating	1x	4.9T	17.8	
_	Top-1 Gating	1.14x	3.4T	16.5	
(Perplexity)	Adaptive Gating	0.89x	3.73T	17.5	
	Dense	0.82x	3.4T	12.5	
Dialogue response	Top-2 Gating	1 x	4.9T	13.4	
	Top-1 Gating	0.93x	3.4T	12.6	
(Perplexity)	Adaptive Gating	0.82x	3.76T	13.3	

st