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* Sparsely-activated MoE: each input selects just a few (1 or 2) experts for
processing

* Benefit: sub-linear scaling of FLOPS with model size
Massive model parameters with constant computation cost.
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Potential of MoE in Transformer Models

° GLaM by GOOgle GPT-3 GLaM relative
cost FLOPs / token (G) 350 180 -48.6%
* GLaM outperforms GPT-3 on 29 tasks Train energy (MWh) 1287 456 —64.6%
Zero-shot 56.9 62.7 +10.2%
aceuracy One-shot 616 655 +6.3%
Of average Few-shot 652 681 +4.4%
3.0 \ —=- 350M dense
» DeepSpeed MoE models 28| e
» Model quality: 6.7B-parameter dense = <26
1.3B-parameter MoE - 128 P
- . S
» Training compute reduction of 5x 22 -
200 60B 120B  180B  240B  300B

Tokens

Figure credit to GLaM and DeepSpeed MoE.



Observation & Motivation

o Existing MoE models, adopts a fixed gating policy (i.e. Top-2 gating in training).
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 MoE experts specialize in different linguistic aspects.

e Many tokens can be effectively handled by a single expert during the training
stage
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e Control the number of experts handling each token to reduce training step
time

Activation(Top-1 Expert) - Activation(Top-2 Expert) > T

;Route to Top-Texperts

e Load balancing loss: impose the soft load balancing constraints on the top-1

gating decisions.
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(hefficient Training

Gate Norm. Computation Norm. MoE Layer Running Time
Top-1 0.5 0.67
Adaptive (80% Top-1) 0.6x 0.76x
Adaptive (50% Top-1) 0.75x 0.92x

Adaptive (20% Top-1) 0.9x 0.97x
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 Mismatch in the data processing granularity between the MoE experts and
the Attention layer.

 MoE expert -> single tokens

o Attention layer -> complete sequence
* Training step time cannot enjoy the same reduction as in computation.
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Curriculum Learning

 Mismatch in the data processing granularity between the MoE experts and
the Attention layer.

 MoE expert -> single tokens

o Attention layer -> complete sequence
* Training step time cannot enjoy the same reduction as in computation.

e Process easier sequences at the initial stages.

* The number of experts required by each token can be an indicator of the
token complexity.

» Complexity vector of a sequence: C, = [rd,re,...rf]




Evaluation

Task Dataset Model Architecture

Sentiment analysis SST-2 (Socher et al., 2013) BERT-Base (Devlin et al., 2018) 12-layer encoder

Translation WMT19 (De->En) (Foundation) FSMT (Ng et al., 2020) 6-layer encoder, 6-layer decoder
Question and Answer SQuAD (Rajpurkar et al., 2016) BERT-Base (Devlin et al., 2018) 12-layer encoder

Summarization CNN/Daily Mail (Hermann et al., 2015; See et al., 2017) BART-Large (Lewis et al., 2019) 12-layer encoder, 12-layer decoder
Text generation wikitext (Merity et al., 2016) GPT-2 (Radford et al., 2019) 24-layer decoder

Dialogue response SODA (Kim et al., 2022) DialoGPT-medium (Zhang et al., 2020) 24-layer decoder

o Testbed
8 A100 GPUs, each with 40 GB memory.
 Data and expert parallel is used for distributed training.

e [hterms of hyperparameters and model architecture, we adopt the default
configurations established in the existing models
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About ~25% of the tokens are routed to two experts.



Evaluation

Task Scheme Norm. Training Time Computation FLOPs Inference Performance
Dense 0.88x 2.18G 0.912
Sentiment analysis Top-2 Gating 1x 3.28G 0.918
Top-1 Gating 0.99x 2.18G 0.902
(Accuracy) Adaptive Gating 0.77x 2.30G 0.919
Dense 0.87x 10.6G 40.9
En->De translation Top-2 Gating Ix 15.9G 41.1
Top-1 Gating 1.04x 10.6G 39.5
(BLEU Score) Adaptive Gating 0.79x 11.5G 41.1
Dense 0.84x 2.18G 75.7
Question and Answer Top-2 Gating 1x 3.27G 77.6
Top-1 Gating 1.07x 2.18G 75.5
(F1 Score) Adaptive Gating 0.86x 2.36G 77.4
Dense 0.89x 79G 42.3
Summarization Top-2 Gating 1x 119G 43.4
Top-1 Gating 1.06x 79G 40.8
(ROUGE-1) Adaptive Gating 0.86x 87G 43.3
Dense 0.84x 34T 16.3
Text completion Top-2 Gating Ix 49T 17.8
Top-1 Gating 1.14x 34T 16.5
(Perplexity) Adaptive Gating 0.89x 3.73T 17.5
Dense 0.82x 34T 12.5
Dialogue response Top-2 Gating 1x 49T 134
Top-1 Gating 0.93x 34T 12.6
(Perplexity) Adaptive Gating 0.82x 3.76T 13.3

Adaptive gating reduces at most
22.5% training time while
maintaining inference quality.



