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Sparsely-Activated Mixture-of-Experts (MokE)
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Figure credit to Anatomical and Functional Plasticity in Early Blind Individuals and the Mixture of Experts Architecture
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« Sparsely-activated MoE: each input selects just a few (1 or 2) experts for processing

« Benefit: sub-linear scaling of FLOPS with model size

Massive model parameters with constant computation cost.

Figure credit to Anatomical and Functional Plasticity in Early Blind Individuals and the Mixture of Experts Architecture



Potential of MoE in Transformer Models

* GLaM by Google GPT-3 GLaM relative

oS FLOPs / token (G) 350 180 -48.6%
» GLaM outperforms GPT-3 on 29 tasks ' Trainenergy MWh) 1287 456 —64.6%

ey GOSN el 655 0i%
on average Few-shot 652 681 +4.4%
30 ~~- 350M dense
» DeepSpeed MoE models 2l = e
* Model quality: 6.7B-parameter dense = §2-6 :
1.3B-parameter MoE - 128 22.4
* Training compute reduction of 5x T2z S
200

Tokens

Figure credit to GLaM and DeepSpeed MoE.



MoE in Transformer-based Language Models

» Feed forward layers (FFN) are replaced with MoE
layers.

Transformer block

Self Attention
« MoE layer = gate + experts !
Add & Norm

» Expert: feed forward neural network !
Feed-Forward Layer

=> same architecture, different parameters !
Add & Norm

 Gate: a trainable matrix to select expert for
each data sample

» Top-2 in training, Top-1 in inference
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» Feed forward layers (FFN) are replaced with MoE Transformer block
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MoE in Transformer-based Language Models

» Feed forward layers (FFN) are replaced with MoE

Transformer block

layers.
y Self Attention
« MoE layer = gate + experts !
Add & Norm
» Expert: feed forward neural network , ' Load
Gate -
=> same architecture, different parameters ~ - < balancing
| ai; p /\ loss
* Gate: a trainable matrix to select expert for FFN, FFN,
each data sample \GT MoE
» Top-2 in training, Top-1 in inference Add &'Norm

 Load balancing loss during training: even distribution among experts.



Distributed MoE

 Hybrid parallelism:
» Expert parallelism: each device hosts one unique expert
» Data parallelism: replicate non-expert parameter on each device
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Distributed MoE

 Hybrid parallelism:

» Expert parallelism: each device hosts one unique expert

» Data parallelism: replicate non-expert parameter on each device
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* All-to-all communication
* 1st: send data samples to experts.
 2nd: restore data samples back
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Distributed MoE

 Hybrid parallelism:
» Expert parallelism: each device hosts one unique expert
» Data parallelism: replicate non-expert parameter on each device

DO DevieeN:]..,
[ Self Attention | éDeViceé [ Self Attention |
v :0...N-1 : !
(Add&Nom] =~ (AdJ&Nom] . » 1st: send data samples to experts.

« All-to-all communication
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Distributed MoE is not efficient

Model Training (ms) Inference (ms)
#Layers & Params All-to-all Ratio All-to-all Ratio
12L + 117M 259 36.7% 73 27.4%
24L + 233M 589 35.4% 103 26.2%
36L + 349M 979 38.2% 153 28.3%
12L + 419M 333 39.5% 102 32.5%
24L + 838M 715 37.6% 177 31.7%
36L + 1.2B 1145 36.8% 243 27.4%

All-to-all takes an average of 34.1% of the step time.
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Distributed MoE is not efficient

All-to-all takes an average of 34.1% of the step time.
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All-to-all takes an average of 34.1% of the step time.
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Distributed MoE is not efficient

All-to-all takes an average of 34.1% of the step time.

'ce (m) Attention Block i
Gate

| [FFN 0} ([FEN 1) (FFN 2] (FFN3]

In MoE Transformer:

- Attention -> a complete sequence ATC s good  Block i+1

+ FFN expert -> one single token Attention

To restore to a sequence, we must wait for the processing of all tokens.
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Is it the only cause of all-to-all being the bottleneck?

« MoE training and inference have their unigue problems.

 Training has backward pass
* Inference is purely workload-driven



MoE Training in Data & Expert Parallel

In backward pass,
» Allreduce: asynchronously aggregate non-expert gradients in data parallel.
» All-to-all: exchange token gradients to compute expert gradients.
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In backward pass,
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MoE Training in Data & Expert Parallel

In backward pass,
» Allreduce: asynchronously aggregate non-expert gradients in data parallel.
» All-to-all: exchange token gradients to compute expert gradients.

Backward Pass

Streama [ £ombine e All-to-all is prolonged when it overlaps with
Stream b DRMPAVIGTOZV I [ Alltoall | . . .
allreduce and directly impacts step time.

Stream ¢ | Allreduce | IES
0 1.6 8692 13.615.0 226 26.1
1.00 ;
. 2 0.751 i
Slowdown of all-to-all varies:  0.50. :
E 0'25_ | -~ Median
Median: 2x; Maximum: ~4x ' | - Mean
0.00 > 3 A

Slowdown Factor



Expert Popularity in MoE Inference

* Inference: no load balancing constraints => expert selection is workload-
driven, therefore, much more biased.

Training Inference
05 - _ 020
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Expert Popularity in MoE Inference

* Inference: no load balancing constraints => expert selection is workload-
driven, therefore, much more biased.
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Devices with unpopular experts have to wait for those with popular experts.



Expert Popularity in MoE Inference

* Inference: no load balancing constraints => expert selection is workload-
driven, therefore, much more biased.

Training Inference
0.5 0.20 - . : :

204 ! 2015 ) Maximum idle time of the least
203 Z0.10 popular expert

8*8‘%: H ” 50.05. ” ” H ” => 29.4% of the inference time.
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Devices with unpopular experts have to wait for those with popular experts.



Training: Challenges

Intuition: always prioritise all-to-all and avoid bandwidth sharing.
» Minimise the blocking period incurred by all-to-all

Gradient 1, i-1 Ready
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Training: Challenges

Intuition: always prioritise all-to-all and avoid bandwidth sharing.

» Minimise the blocking period incurred by all-to-all

Backward pass

Gradient 1, i-1 Ready

Stream a Gif -G ][ |Combine [1 BN

Stream b v [ Alltoall | [ Allto-all |

Stream ¢ : »
0 4.15.7 /' 120133 14.717.7 19.3 269 290

All-reduce operation

Baseline
Challenges:

Gradient 1, i-1 Ready

Stream a G |[-|Gif[ | Combine [N [ Gate |

Stream b ' | All-to-all | | All-to-all |
Stream ¢ [ ] ms
0 4157 13.3 14.9 22.523.8 24.6
Optimal

1. NCCL Communication primitives cannot be preempted.

2. No control knob to adjust resource sharing (GPU SM, network bandwidth...).
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Training: Micro-op Scheduling

* Tensor Partitioning
* Partition allreduce into micro-ops
* Prioritise all-to-all whenever possible
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Inference: Challenges

* MoE inference: no load balancing constraints => expert selection is workload-
driven, therefore, much more biased.

Training Inference

0.5 - 0.20
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Devices with unpopular experts have to wait for those with popular experts.
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Inference: Challenges

Q: How to deal with imbalance computation load?

* MoE inference: no load balancing constraints => expert selection is workload-
driven, therefore, much more biased.
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Inference: Challenges

Q: How to deal with imbalance computation load?
Allocate resources based on expert popularity:
Popular experts => more resources.

* MoE inference: no load balancing constraints => expert selection is workload-
driven, therefore, much more biased.

Training [[] Inference
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Inference: Challenges

Q: H OW to d ea | With i m ba |a n Ce CO m p utati O n | Oa d? * MoE inference: no load balancing constraints => expert selection is workload-

driven, therefore, much more biased.
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How to achieve low-overhead resource scheduling to balance device load?
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Inference: Pattern in Expert Selection

 Findings: similar tokens tend to be processed by the same or similar experts
in each layer.

« Tokens selecting the same expertin layer i tend to select the same expert
againin layeri+ 1.
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Inference: Pattern in Expert Selection

 Findings: similar tokens tend to be processed by the same or similar experts
in each layer.

« Tokens selecting the same expertin layer i tend to select the same expert
againin layeri+ 1.
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Inference: Expert Popularity Estimation
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Inference: Expert Popularity Estimation

* |ldea: Collect the expert selection distribution during training after the load
balancing loss is minimised.
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Inference: Expert Popularity Estimation

* |ldea: Collect the expert selection distribution during training after the load
balancing loss is minimised.

Tokens that select the same
Iayer i-2 | EO | E1 | E2 | E3 | experts from layer i —/to layer i

Expert selection path j
1 2 | E3 T

layeri-1 | EO 5\/
Top-k Expert e '
popularity: {Pit!) E

layeri | EO 1\%2 E3
J()
1

Expert popularity

distribution of path

I

Z
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Inference: Two-phase Scheduling

 Phase 1:

» Compute resource allocation for expert e based on popularity
estimation:

No. of tokens in a batch <—|
No. of GPUs<-|

N,
z‘v Z Pitl(e)/N,
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Inference: Two-phase Scheduling

* Phase 1: Pipelined with model computation => nearly zero overhead

» Compute resource allocation for expert e based on popularity
estimation:

No. of tokens in a batch <—|
No. of GPUs<-|

]‘Vx Pl(j)l(e)/N,

15



Inference: Two-phase Scheduling

* Phase 1: Pipelined with model computation => nearly zero overhead

» Compute resource allocation for expert e based on popularity
estimation:

No. of tokens in a batch <—|
No. of GPUs<-|

N,
= N X Z Pitl(e)/N,

‘ J(0)
* Phase 2:
 Fine-tune the allocation with the actual expert selection.

» Re-compute the allocation when the actual selection deviates
significantly from the estimation.
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Evaluation

 Testbed: Our testbed has four worker nodes. Each node has 4 Ampere A100
GPUs with 40GB memory and is equipped with 100Gbps InfiniBand.

» Every FFN layer in Transformer is replaced with the MoE layer.
 Training models:

« Transformer-XL: a 24-layer encoder model.

« BERT2GPT2: a 12-layer encoder-decoder model.

« GPT-2: a 12-layer decoder model.
* Inference models:

» Transformer-XL: text generation with Enwik8 test set.

» BERT: a 12-layer decoder model for translation using WMT En-De test set.
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Training Step Time

Training step time speedup over Baseline (DeepSpeed) with different
design choices.

== Priority only ||l Priority + Partition /% Priority + Partition + Pipeline

1.6 1.6 1.6
2 e " L o . 7 O o )
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SNE S E LI N
2 |alg EZ Sl 22 \ely EZ E7 f5 3 lslg =z EfF £
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Experts Experts Experts

Transformer-XL GPT-2 BERT2GPT2
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MoE Layer in Inference

MoE layer running time speedup over Ideal.
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Lina’s Contributions

* An in-depth empirical analysis of distributed MoE

« Main causes for all-to-all to be the performance bottleneck in training and
inference.

* [Training] A scheduler prioritises all-to-all over allreduce to improve its
bandwidth and reduce its blocking period.

* [Inference] An estimation method of expert popularity to conduct two-phase
resource scheduling.

Thanks!
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