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Sparsely-Activated Mixture-of-Experts (MoE)
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• Sparsely-activated MoE: each input selects just a few (1 or 2) experts for processing


• Benefit: sub-linear scaling of FLOPS with model size

Massive model parameters with constant computation cost.


Figure credit to Anatomical and Functional Plasticity in Early Blind Individuals and the Mixture of Experts Architecture

An ensemble of experts.
MoE architecture



Potential of MoE in Transformer Models
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• GLaM by Google

• GLaM outperforms GPT-3 on 29 tasks


• DeepSpeed MoE models

• Model quality: 6.7B-parameter dense = 

1.3B-parameter MoE - 128

• Training compute reduction of 5x

Figure credit to GLaM and DeepSpeed MoE.



MoE in Transformer-based Language Models
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• Feed forward layers (FFN) are replaced with MoE 
layers.


• MoE layer = gate + experts

• Expert: feed forward neural network 


=> same architecture, different parameters

• Gate: a trainable matrix to select expert for 

each data sample

• Top-2 in training, Top-1 in inference
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• Hybrid parallelism:

• Expert parallelism: each device hosts one unique expert

• Data parallelism: replicate non-expert parameter on each device 
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• Hybrid parallelism:

• Expert parallelism: each device hosts one unique expert

• Data parallelism: replicate non-expert parameter on each device 

Distributed

• All-to-all communication

• 1st: send data samples to experts.

• 2nd: restore data samples back
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• Same data transfer size
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Distributed MoE is not efficient

6

All-to-all takes an average of 34.1% of the step time. All-to-all takes an average of 34.1% of the step time. 

In MoE Transformer:

• Attention -> a complete sequence

• FFN expert -> one single token

is good

To restore to a sequence, we must wait for the processing of all tokens.

Block i

Block i+1

Attention

FFN 0 FFN 1 FFN 2 FFN 3

Attention

Gate

…

ATC
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Is it the only cause of all-to-all being the bottleneck?

• Training has backward pass

• Inference is purely workload-driven



In backward pass, 
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• All-to-all: exchange token gradients to compute expert gradients.
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0
Allreduce
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GateCombine

1.6 8.6 9.2 13.6 15.0 22.6 26.1

All-to-all is prolonged when it overlaps with 
allreduce and directly impacts step time.
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Expert Popularity in MoE Inference

9

• Inference: no load balancing constraints => expert selection is workload-
driven, therefore, much more biased.
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• Inference: no load balancing constraints => expert selection is workload-
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Expert Popularity in MoE Inference

9

• Inference: no load balancing constraints => expert selection is workload-
driven, therefore, much more biased.

Devices with unpopular experts have to wait for those with popular experts.

Maximum idle time of the least 
popular expert 

=> 29.4% of the inference time.
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Challenges:

1. NCCL Communication primitives cannot be preempted.

2. No control knob to adjust resource sharing (GPU SM, network bandwidth…).

Gradient i, i-1 Ready
Stream a
Stream b
Stream c ms

0 4.1 19.3 26.9 29.05.7

Bucket  [Gi...Gi-2]

14.7 17.7

Gate

12.0

All-to-all

FFNCombine

All-to-all

13.3

Gi Gi-2... Stream a
Stream b
Stream c ms

0 4.1 23.85.7 13.3

FFNCombine

All-to-allAll-to-all

22.5

Gate

14.9

Gi

24.6

Gradient i, i-1 Ready

Gi-2

Gi ... Gi-2

Gi-1

Baseline Optimal

Intuition: always prioritise all-to-all and avoid bandwidth sharing.

• Minimise the blocking period incurred by all-to-all

All-reduce operation

Backward pass



Training: Micro-op Scheduling

11

• Tensor Partitioning

• Partition allreduce into micro-ops

• Prioritise all-to-all whenever possible
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Q: How to deal with imbalance computation load?

How to achieve low-overhead resource scheduling to balance device load?

Token’s expert selection cannot be determined a prior 
to the actual gating computation.

Resource scheduling after gating network.

Inefficient practice for latency-sensitive tasks!

Allocate resources based on expert popularity:
Popular experts => more resources.
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Exploit this pattern to estimate 
the overall expert popularity
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• Idea: Collect the expert selection distribution during training after the load 
balancing loss is minimised.
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layer i+1 E0 E1 E2 E3E0 E2
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• Phase 1: 

• Compute resource allocation for expert e based on popularity 

estimation:


• Phase 2:

• Fine-tune the allocation with the actual expert selection. 


• Re-compute the allocation when the actual selection deviates 
significantly from the estimation.

ne = N ×
Nt

∑
t=1

Pi+1
j(t) (e)/Nt

No. of tokens in a batch

No. of GPUs

Pipelined with model computation => nearly zero overhead



Evaluation
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• Testbed: Our testbed has four worker nodes. Each node has 4 Ampere A100 
GPUs with 40GB memory and is equipped with 100Gbps InfiniBand.


• Every FFN layer in Transformer is replaced with the MoE layer.


• Training models: 


• Transformer-XL: a 24-layer encoder model.


• BERT2GPT2: a 12-layer encoder-decoder model.


• GPT-2: a 12-layer decoder model.


• Inference models:


• Transformer-XL: text generation with Enwik8 test set. 


• BERT: a 12-layer decoder model for translation using WMT En-De test set. 



Training step time speedup over Baseline (DeepSpeed) with different 
design choices. 


Training Step Time

17

Transformer-XL GPT-2 BERT2GPT2
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MoE Layer in Training
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MoE layer forward, backward, all-to-all running time speedup over Baseline. 




Ideal: schedule resources assuming we have the prior knowledge of exact 
expert popularity.


Inference Latency
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95%ile Latency

Transformer-XL BERT



MoE Layer in Inference
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MoE layer running time speedup over Ideal. 
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Transformer-XL BERT

All-to-all running time speedup over Ideal in selected layers. 




Lina’s Contributions
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Thanks!

• An in-depth empirical analysis of distributed MoE 


• Main causes for all-to-all to be the performance bottleneck in training and 
inference.


• [Training] A scheduler prioritises all-to-all over allreduce to improve its 
bandwidth and reduce its blocking period.


• [Inference] An estimation method of expert popularity to conduct two-phase 
resource scheduling.


