Accelerating Distributed MoE Training and Inference with Lina

Jiamin Li¹, Yimin Jiang², Yibo Zhu, Cong Wang¹, Hong Xu²

¹City University of Hong Kong, ²ByteDance Inc., ³The Chinese University of Hong Kong

ATC 2023

Sparsely-Activated Mixture-of-Experts (MoE)

MoE architecture
An ensemble of experts.

Sparsely-Activated Mixture-of-Experts (MoE)

MoE architecture
An ensemble of experts.

- *Sparsely-activated* MoE: each input selects just a few (1 or 2) experts for processing
- Benefit: sub-linear scaling of FLOPS with model size

Sparsely-Activated Mixture-of-Experts (MoE)

MoE architecture
An ensemble of experts.

- *Sparsely-activated* MoE: each input selects just a few (1 or 2) experts for processing
- Benefit: sub-linear scaling of FLOPS with model size

Massive model parameters with constant computation cost.

Potential of MoE in Transformer Models

- GLaM by Google
 - GLaM outperforms GPT-3 on 29 tasks

		GPT-3	GLaM	relative
cost	FLOPs / token (G) Train energy (MWh)	350 1287	180 456	-48.6% -64.6%
accuracy on average	Zero-shot One-shot Few-shot	56.9 61.6 65.2	62.7 65.5 68.1	+10.2% +6.3% +4.4%

- DeepSpeed MoE models
 - Model quality: 6.7B-parameter dense =
 1.3B-parameter MoE 128
 - Training compute reduction of 5x

- Feed forward layers (FFN) are replaced with MoE layers.
- MoE layer = gate + experts
 - Expert: feed forward neural network
 => <u>same</u> architecture, <u>different</u> parameters
 - Gate: a *trainable* matrix to select expert for each data sample
 - Top-2 in training, Top-1 in inference

- Feed forward layers (FFN) are replaced with MoE layers.
- MoE layer = gate + experts
 - Expert: feed forward neural network
 => <u>same</u> architecture, <u>different</u> parameters
 - Gate: a *trainable* matrix to select expert for each data sample
 - Top-2 in training, Top-1 in inference

- Feed forward layers (FFN) are replaced with MoE layers.
- MoE layer = gate + experts
 - Expert: feed forward neural network
 => <u>same</u> architecture, <u>different</u> parameters
 - Gate: a *trainable* matrix to select expert for each data sample
 - Top-2 in training, Top-1 in inference

- Feed forward layers (FFN) are replaced with MoE layers.
- MoE layer = gate + experts
 - Expert: feed forward neural network
 => <u>same</u> architecture, <u>different</u> parameters
 - Gate: a *trainable* matrix to select expert for each data sample
 - Top-2 in training, Top-1 in inference
 - Load balancing loss during training: <u>even</u> distribution among experts.

- Hybrid parallelism:
 - Expert parallelism: each device hosts one unique expert
 - Data parallelism: replicate non-expert parameter on each device

Single-device

- Hybrid parallelism:
 - Expert parallelism: each device hosts one unique expert
 - Data parallelism: replicate non-expert parameter on each device

- Hybrid parallelism:
 - Expert parallelism: each device hosts one unique expert
 - Data parallelism: replicate non-expert parameter on each device

- All-to-all communication
 - 1st: send data samples to experts.
 - 2nd: restore data samples back

- Hybrid parallelism:
 - Expert parallelism: each device hosts one unique expert
 - Data parallelism: replicate non-expert parameter on each device

• 1st send data s:

All-to-all communication

- 1st: send data samples to experts.
- 2nd: restore data samples back

- Hybrid parallelism:
 - Expert parallelism: each device hosts one unique expert
 - Data parallelism: replicate non-expert parameter on each device

- All-to-all communication
 - 1st: send data samples to experts.
- 2nd: restore data samples back

 Expert
 Same data transfer size

 Linear

Model	Training (ms)		Inference (ms)	
#Layers & Params	All-to-all	Ratio	All-to-all	Ratio
12L + 117M	259	36.7%	73	27.4%
24L + 233M	589	35.4%	103	26.2%
36L + 349M	979	38.2%	153	28.3%
12L + 419M	333	39.5%	102	32.5%
24L + 838M	715	37.6%	177	31.7%
36L + 1.2B	1145	36.8%	243	27.4%

All-to-all takes an average of 34.1% of the step time.

All-to-all takes an average of 34.1% of the step time.

e (ms)	
Ratio	
27.4% 26.2% 28.3%	
32.5% 31.7% 27.4%	

All-to-all takes an average of 34.1% of the step time.

e (ms)	
Ratio	
27.4% 26.2% 28.3%	
32.5% 31.7% 27.4%	

- Attention -> a complete sequence
- FFN expert -> one single token

All-to-all takes an average of 34.1% of the step time.

ce	(ms)	
l	Ratio	
	27.4% 26.2% 28.3%	
	32.5% 31.7% 27.4%	

- Attention -> a complete sequence
- FFN expert -> one single token

All-to-all takes an average of 34.1% of the step time.

e (ms)	
Ratio	
27.4% 26.2% 28.3%	
32.5% 31.7% 27.4%	

- Attention -> a complete sequence
- FFN expert -> one single token

All-to-all takes an average of 34.1% of the step time.

e (ms)	
Ratio	
27.4% 26.2% 28.3%	
32.5% 31.7% 27.4%	

- Attention -> a complete sequence
- FFN expert -> one single token

All-to-all takes an average of 34.1% of the step time.

e (ms)	
Ratio	
27.4% 26.2% 28.3%	
32.5% 31.7% 27.4%	

- Attention -> a complete sequence
- FFN expert -> one single token

All-to-all takes an average of 34.1% of the step time.

e (ms)	
Ratio	
27.4% 26.2% 28.3%	
32.5% 31.7% 27.4%	

In MoE Transformer:

- Attention -> a complete sequence
- FFN expert -> one single token

To restore to a sequence, we must wait for the processing of all tokens.

• Synchronous and blocking operation & large amounts of data transfer.

Synchronous and blocking operation & large amounts of data transfer.

Synchronous and blocking operation & large amounts of data transfer.

Synchronous and blocking operation & large amounts of data transfer.

Is it the only cause of all-to-all being the bottleneck?

Synchronous and blocking operation & large amounts of data transfer.

Is it the only cause of all-to-all being the bottleneck?

MoE training and inference have their <u>unique</u> problems.

Synchronous and blocking operation & large amounts of data transfer.

Is it the only cause of all-to-all being the bottleneck?

- MoE training and inference have their <u>unique</u> problems.
 - Training has backward pass
 - Inference is purely workload-driven

In backward pass,

- Allreduce: asynchronously aggregate <u>non-expert</u> gradients in data parallel.
- All-to-all: exchange token gradients to compute expert gradients.

In backward pass,

- Allreduce: asynchronously aggregate *non-expert* gradients in data parallel.
- All-to-all: exchange token gradients to compute expert gradients.

In backward pass,

- Allreduce: asynchronously aggregate <u>non-expert</u> gradients in data parallel.
- All-to-all: exchange token gradients to compute expert gradients.

All-to-all is prolonged when it overlaps with allreduce and directly impacts step time.

In backward pass,

- Allreduce: asynchronously aggregate <u>non-expert</u> gradients in data parallel.
- All-to-all: exchange token gradients to compute expert gradients.

All-to-all is prolonged when it overlaps with allreduce and directly impacts step time.

Slowdown of all-to-all varies:

Median: 2x; Maximum: ~4x

Expert Popularity in MoE Inference

 Inference: no load balancing constraints => expert selection is workloaddriven, therefore, much more <u>biased</u>.

Expert Popularity in MoE Inference

 Inference: no load balancing constraints => expert selection is workloaddriven, therefore, much more <u>biased</u>.

Devices with unpopular experts have to wait for those with popular experts.

Expert Popularity in MoE Inference

 Inference: no load balancing constraints => expert selection is workloaddriven, therefore, much more <u>biased</u>.

Devices with unpopular experts have to wait for those with popular experts.

Training: Challenges

Intuition: always prioritise all-to-all and avoid bandwidth sharing.

Minimise the blocking period incurred by all-to-all

Training: Challenges

Intuition: always prioritise all-to-all and avoid bandwidth sharing.

Minimise the blocking period incurred by all-to-all

Training: Challenges

Intuition: always prioritise all-to-all and avoid bandwidth sharing.

 Minimise the blocking period incurred by all-to-all Backward pass

Challenges:

- 1. NCCL Communication primitives cannot be preempted.
- 2. No control knob to adjust resource sharing (GPU SM, network bandwidth...).

- Tensor Partitioning
 - Partition allreduce into micro-ops
 - Prioritise all-to-all whenever possible

Baseline

- Tensor Partitioning
 - Partition allreduce into micro-ops
 - Prioritise all-to-all whenever possible

Baseline

Prioritise all-to-all

- Tensor Partitioning
 - Partition allreduce into micro-ops
 - Prioritise all-to-all whenever possible

Baseline

Prioritise all-to-all

- Partition all-to-all into micro-ops
- Pipelining computation and all-to-all

- Tensor Partitioning
 - Partition allreduce into micro-ops
 - Prioritise all-to-all whenever possible

Baseline

- Partition all-to-all into micro-ops
- Pipelining computation and all-to-all

Prioritise all-to-all

 MoE inference: no load balancing constraints => expert selection is workloaddriven, therefore, much more <u>biased</u>.

Devices with unpopular experts have to wait for those with popular experts.

Q: How to deal with imbalance computation load?

Q: How to deal with imbalance computation load? Allocate resources based on expert popularity: Popular experts => more resources.

Q: How to deal with imbalance computation load? Allocate resources based on expert popularity: Popular experts => more resources.

• MoE inference: no load balancing constraints => expert selection is workloaddriven, therefore, much more biased.

Training

O.20

Ego. 1

O.00

O.00

Expert

O.00

Token's expert selection cannot be determined a prior to the actual gating computation.

Model& Dataset	Layer	Top-4			
T C	3	9	4	5	10
Transformer-XL & Enwik8 (Text generation)	4	5	7	8	10
	8	9	2	3	13
	12	4	5	15	8
BERT-Large & WMT En-De (Translation)	6	7	6	10	1
	8	10	6	2	15
	10	9	4	11	8
	12	1	8	10	14

Q: How to deal with imbalance computation load? Allocate resources based on expert popularity: Popular experts => more resources.

Token's expert selection cannot be determined a prior to the actual gating computation.

Resource scheduling after gating network.

Inefficient practice for latency-sensitive tasks!

Model& Dataset	Layer	Top-4			
Transformer-XL & Enwik8 (Text generation)	3	9	4	5	10
	4	5	7	8	10
	8	9	2	3	13
	12	4	5	15	8
BERT-Large & WMT En-De (Translation)	6	7	6	10	1
	8	10	6	2	15
	10	9	4	11	8
	12	1	8	10	14

Q: How to deal with imbalance computation load? Allocate resources based on expert popularity: Popular experts => more resources.

Token's expert selection cannot be determined a prior to the actual gating computation.

Resource scheduling after gating network.

Inefficient practice for latency-sensitive tasks!

Model& Dataset	Layer	Top-4			
Transformer-XL & Enwik8 (Text generation)	3	9	4	5	10
	4	5	7	8	10
	8	9	2	3	13
	12	4	5	15	8
BERT-Large & WMT En-De (Translation)	6	7	6	10	1
	8	10	6	2	15
	10	9	4	11	8
	12	1	8	10	14

How to achieve low-overhead resource scheduling to balance device load?

- Findings: similar tokens tend to be processed by the same or similar experts in each layer.
- Tokens selecting the same expert in layer i tend to select the same expert again in layer i + 1.

- Findings: similar tokens tend to be processed by the same or similar experts in each layer.
- Tokens selecting the same expert in layer i tend to select the same expert again in layer i + 1.

- Findings: similar tokens tend to be processed by the same or similar experts in each layer.
- Tokens selecting the same expert in layer i tend to select the same expert again in layer i + 1.

41.94% tokens when k is 1 54.59% tokens when k is 2

- Findings: similar tokens tend to be processed by the same or similar experts in each layer.
- Tokens selecting the same expert in layer i tend to select the same expert again in layer i + 1.

41.94% tokens when k is 1 54.59% tokens when k is 2

Exploit this pattern to estimate the overall expert popularity

 Idea: Collect the expert selection distribution during training <u>after the load</u> <u>balancing loss is minimised.</u>

• Idea: Collect the expert selection distribution during training <u>after the load</u> <u>balancing loss is minimised.</u>

• Idea: Collect the expert selection distribution during training <u>after the load</u> <u>balancing loss is minimised.</u>

• Idea: Collect the expert selection distribution during training <u>after the load</u> <u>balancing loss is minimised.</u>

Inference: Two-phase Scheduling

- Phase 1:
 - Compute resource allocation for expert e based on popularity estimation:

$$n_e = N \times \sum_{t=1}^{N_t} P_{j(t)}^{i+1}(e)/N_t$$
 No. of tokens in a batch No. of GPUs

Inference: Two-phase Scheduling

- Phase 1: Pipelined with model computation => nearly zero overhead
 - Compute resource allocation for expert *e* based on popularity estimation:

$$n_e = N \times \sum_{t=1}^{N_t} P_{j(t)}^{i+1}(e)/N_t$$
 No. of tokens in a batch No. of GPUs

Inference: Two-phase Scheduling

- Phase 1: Pipelined with model computation => nearly zero overhead
 - Compute resource allocation for expert *e* based on popularity estimation:

$$n_e = N \times \sum_{t=1}^{N_t} P_{j(t)}^{i+1}(e)/N_t$$
 No. of tokens in a batch No. of GPUs

- Phase 2:
 - Fine-tune the allocation with the actual expert selection.
 - Re-compute the allocation when the actual selection deviates significantly from the estimation.

Evaluation

- Testbed: Our testbed has four worker nodes. Each node has 4 Ampere A100 GPUs with 40GB memory and is equipped with 100Gbps InfiniBand.
- Every FFN layer in Transformer is replaced with the MoE layer.
- Training models:
 - Transformer-XL: a 24-layer encoder model.
 - BERT2GPT2: a 12-layer encoder-decoder model.
 - GPT-2: a 12-layer decoder model.
- Inference models:
 - Transformer-XL: text generation with Enwik8 test set.
 - BERT: a 12-layer decoder model for translation using WMT En-De test set.

Training Step Time

Training step time speedup over Baseline (DeepSpeed) with different design choices.

MoE Layer in Training

MoE layer forward, backward, all-to-all running time speedup over Baseline.

Inference Latency

Ideal: schedule resources assuming we have the prior knowledge of exact expert popularity.

MoE Layer in Inference

MoE layer running time speedup over Ideal.

All-to-all running time speedup over Ideal in selected layers.

Lina's Contributions

- An in-depth empirical analysis of distributed MoE
 - Main causes for all-to-all to be the performance bottleneck in training and inference.
- [Training] A scheduler prioritises all-to-all over allreduce to improve its bandwidth and reduce its blocking period.
- [Inference] An estimation method of expert popularity to conduct two-phase resource scheduling.

Thanks!