
1

Accelerating Distributed MoE 
Training and Inference with Lina
Jiamin Li1, Yimin Jiang2, Yibo Zhu, Cong Wang1, Hong Xu2

1City University of Hong Kong, 2ByteDance Inc., 3The Chinese University of Hong Kong

ATC 2023

Sparsely-Activated Mixture-of-Experts (MoE)

2
Figure credit to Anatomical and Functional Plasticity in Early Blind Individuals and the Mixture of Experts Architecture

An ensemble of experts.
MoE architecture

Sparsely-Activated Mixture-of-Experts (MoE)

2

• Sparsely-activated MoE: each input selects just a few (1 or 2) experts for processing

• Benefit: sub-linear scaling of FLOPS with model size

Figure credit to Anatomical and Functional Plasticity in Early Blind Individuals and the Mixture of Experts Architecture

An ensemble of experts.
MoE architecture

Sparsely-Activated Mixture-of-Experts (MoE)

2

• Sparsely-activated MoE: each input selects just a few (1 or 2) experts for processing

• Benefit: sub-linear scaling of FLOPS with model size

Massive model parameters with constant computation cost.

Figure credit to Anatomical and Functional Plasticity in Early Blind Individuals and the Mixture of Experts Architecture

An ensemble of experts.
MoE architecture

Potential of MoE in Transformer Models

3

• GLaM by Google

• GLaM outperforms GPT-3 on 29 tasks

• DeepSpeed MoE models

• Model quality: 6.7B-parameter dense =

1.3B-parameter MoE - 128

• Training compute reduction of 5x

Figure credit to GLaM and DeepSpeed MoE.

MoE in Transformer-based Language Models

4

• Feed forward layers (FFN) are replaced with MoE
layers.

• MoE layer = gate + experts

• Expert: feed forward neural network

=> same architecture, different parameters

• Gate: a trainable matrix to select expert for

each data sample

• Top-2 in training, Top-1 in inference

Self Attention

Add & Norm

Add & Norm

Feed-Forward Layer

Self Attention

Add & Norm

Add & Norm

Feed-Forward Layer

Transformer block

MoE in Transformer-based Language Models

4

• Feed forward layers (FFN) are replaced with MoE
layers.

• MoE layer = gate + experts

• Expert: feed forward neural network

=> same architecture, different parameters

• Gate: a trainable matrix to select expert for

each data sample

• Top-2 in training, Top-1 in inference

Self Attention

Add & Norm

Add & Norm

Feed-Forward Layer
Self Attention

Add & Norm

Add & Norm

Feed-Forward Layer

Self Attention

Add & Norm

Gate

+

Add & Norm

FFN1 FFN2 FFN3

MoE

FFN0

Transformer block

MoE in Transformer-based Language Models

4

• Feed forward layers (FFN) are replaced with MoE
layers.

• MoE layer = gate + experts

• Expert: feed forward neural network

=> same architecture, different parameters

• Gate: a trainable matrix to select expert for

each data sample

• Top-2 in training, Top-1 in inference

Self Attention

Add & Norm

Add & Norm

Feed-Forward Layer
Self Attention

Add & Norm

Add & Norm

Feed-Forward Layer

Self Attention

Add & Norm

Gate

+

Add & Norm

FFN1 FFN2 FFN3

MoE

FFN0FFN0 FFN2

Transformer block

MoE in Transformer-based Language Models

4

• Feed forward layers (FFN) are replaced with MoE
layers.

• MoE layer = gate + experts

• Expert: feed forward neural network

=> same architecture, different parameters

• Gate: a trainable matrix to select expert for

each data sample

• Top-2 in training, Top-1 in inference

Self Attention

Add & Norm

Add & Norm

Feed-Forward Layer
Self Attention

Add & Norm

Add & Norm

Feed-Forward Layer

Self Attention

Add & Norm

Gate

+

Add & Norm

FFN1 FFN2 FFN3

MoE

FFN0

• Load balancing loss during training: even distribution among experts.

Load
balancing

loss
FFN0 FFN2

Transformer block

Distributed MoE

5

• Hybrid parallelism:

• Expert parallelism: each device hosts one unique expert

• Data parallelism: replicate non-expert parameter on each device

Self Attention

Add & Norm

Gate

+

Add & Norm

FFN1 FFN2 FFN3

MoE

FFN0

Single-device

Self Attention

Add & Norm

Gate

Add & Norm

FFNN-1

Self Attention

Add & Norm

Gate

Add & Norm

FFN0

All-to-all

...
Device
0...N-1

All-to-all

Device 0 Device N-1

Distributed MoE

5

• Hybrid parallelism:

• Expert parallelism: each device hosts one unique expert

• Data parallelism: replicate non-expert parameter on each device

Distributed

Self Attention

Add & Norm

Gate

+

Add & Norm

FFN1 FFN2 FFN3

MoE

FFN0

Single-device

Self Attention

Add & Norm

Gate

Add & Norm

FFNN-1

Self Attention

Add & Norm

Gate

Add & Norm

FFN0

All-to-all

...
Device
0...N-1

All-to-all

Device 0 Device N-1

Distributed MoE

5

• Hybrid parallelism:

• Expert parallelism: each device hosts one unique expert

• Data parallelism: replicate non-expert parameter on each device

Distributed

• All-to-all communication

• 1st: send data samples to experts.

• 2nd: restore data samples back
All-to-all

All-to-all

Self Attention

Add & Norm

Gate

+

Add & Norm

FFN1 FFN2 FFN3

MoE

FFN0

Single-device

Self Attention

Add & Norm

Gate

Add & Norm

FFNN-1

Self Attention

Add & Norm

Gate

Add & Norm

FFN0

All-to-all

...
Device
0...N-1

All-to-all

Device 0 Device N-1

Distributed MoE

5

• Hybrid parallelism:

• Expert parallelism: each device hosts one unique expert

• Data parallelism: replicate non-expert parameter on each device

Distributed

• All-to-all communication

• 1st: send data samples to experts.

• 2nd: restore data samples back
All-to-all

All-to-all

Self Attention

Add & Norm

Gate

Add & Norm

FFNN-1

Self Attention

Add & Norm

Gate

Add & Norm

FFN0

All-to-all

...
Device
0...N-1

All-to-all

Device 0 Device N-1

Distributed MoE

5

• Hybrid parallelism:

• Expert parallelism: each device hosts one unique expert

• Data parallelism: replicate non-expert parameter on each device

Distributed

• All-to-all communication

• 1st: send data samples to experts.

• 2nd: restore data samples back
All-to-all

All-to-all
Linear

Expert

Linear
• Same data transfer size

Distributed MoE is not efficient

6

All-to-all takes an average of 34.1% of the step time.

Distributed MoE is not efficient

6

All-to-all takes an average of 34.1% of the step time. All-to-all takes an average of 34.1% of the step time.

Distributed MoE is not efficient

6

All-to-all takes an average of 34.1% of the step time. All-to-all takes an average of 34.1% of the step time.

In MoE Transformer:

• Attention -> a complete sequence

• FFN expert -> one single token

Block i

Block i+1

Attention

FFN 0 FFN 1 FFN 2 FFN 3

Attention

Gate

…

Distributed MoE is not efficient

6

All-to-all takes an average of 34.1% of the step time. All-to-all takes an average of 34.1% of the step time.

In MoE Transformer:

• Attention -> a complete sequence

• FFN expert -> one single token

ATC is good
Block i

Block i+1

Attention

FFN 0 FFN 1 FFN 2 FFN 3

Attention

Gate

…

Distributed MoE is not efficient

6

All-to-all takes an average of 34.1% of the step time. All-to-all takes an average of 34.1% of the step time.

In MoE Transformer:

• Attention -> a complete sequence

• FFN expert -> one single token

is good
Block i

Block i+1

Attention

FFN 0 FFN 1 FFN 2 FFN 3

Attention

Gate

…

ATC

Distributed MoE is not efficient

6

All-to-all takes an average of 34.1% of the step time. All-to-all takes an average of 34.1% of the step time.

In MoE Transformer:

• Attention -> a complete sequence

• FFN expert -> one single token

isgood

Block i

Block i+1

Attention

FFN 0 FFN 1 FFN 2 FFN 3

Attention

Gate

…

ATC

Distributed MoE is not efficient

6

All-to-all takes an average of 34.1% of the step time. All-to-all takes an average of 34.1% of the step time.

In MoE Transformer:

• Attention -> a complete sequence

• FFN expert -> one single token

is good

Block i

Block i+1

Attention

FFN 0 FFN 1 FFN 2 FFN 3

Attention

Gate

…

ATC

Distributed MoE is not efficient

6

All-to-all takes an average of 34.1% of the step time. All-to-all takes an average of 34.1% of the step time.

In MoE Transformer:

• Attention -> a complete sequence

• FFN expert -> one single token

is good

To restore to a sequence, we must wait for the processing of all tokens.

Block i

Block i+1

Attention

FFN 0 FFN 1 FFN 2 FFN 3

Attention

Gate

…

ATC

All-to-all is the bottleneck

7

• Synchronous and blocking operation & large amounts of data transfer.

All-to-all is the bottleneck

7

• Synchronous and blocking operation & large amounts of data transfer.

Stream a
Stream b All-to-all

Forward Pass

0 3.1 10.7 12.1 18.7
ms

20.3
All-to-all

Gate FFN Combine

All-to-all is the bottleneck

7

• Synchronous and blocking operation & large amounts of data transfer.

	 � � �

�������

	�

�

��

��

�
��
��
���

�

	�
	

	�
	��
	�	

��
 �

���
�
�

�����
����������� �

Stream a
Stream b All-to-all

Forward Pass

0 3.1 10.7 12.1 18.7
ms

20.3
All-to-all

Gate FFN Combine

All-to-all is the bottleneck

7

• Synchronous and blocking operation & large amounts of data transfer.

	 � � �

�������

	�

�

��

��

�
��
��
���

�

	�
	

	�
	��
	�	

��
 �

���
�
�

�����
����������� �

Stream a
Stream b All-to-all

Forward Pass

0 3.1 10.7 12.1 18.7
ms

20.3
All-to-all

Gate FFN Combine

Is it the only cause of all-to-all being the bottleneck?

• MoE training and inference have their unique problems.

All-to-all is the bottleneck

7

• Synchronous and blocking operation & large amounts of data transfer.

	 � � �

�������

	�

�

��

��

�
��
��
���

�

	�
	

	�
	��
	�	

��
 �

���
�
�

�����
����������� �

Stream a
Stream b All-to-all

Forward Pass

0 3.1 10.7 12.1 18.7
ms

20.3
All-to-all

Gate FFN Combine

Is it the only cause of all-to-all being the bottleneck?

• MoE training and inference have their unique problems.

All-to-all is the bottleneck

7

• Synchronous and blocking operation & large amounts of data transfer.

	 � � �

�������

	�

�

��

��

�
��
��
���

�

	�
	

	�
	��
	�	

��
 �

���
�
�

�����
����������� �

Stream a
Stream b All-to-all

Forward Pass

0 3.1 10.7 12.1 18.7
ms

20.3
All-to-all

Gate FFN Combine

Is it the only cause of all-to-all being the bottleneck?

• Training has backward pass

• Inference is purely workload-driven

In backward pass,

• Allreduce: asynchronously aggregate non-expert gradients in data parallel.

• All-to-all: exchange token gradients to compute expert gradients.

MoE Training in Data & Expert Parallel

8

In backward pass,

• Allreduce: asynchronously aggregate non-expert gradients in data parallel.

• All-to-all: exchange token gradients to compute expert gradients.

MoE Training in Data & Expert Parallel

8

Stream c

Stream a
Stream b

Backward Pass

ms
All-to-all

FFN

0
Allreduce

All-to-all
GateCombine

1.6 8.6 9.2 13.6 15.0 22.6 26.1

In backward pass,

• Allreduce: asynchronously aggregate non-expert gradients in data parallel.

• All-to-all: exchange token gradients to compute expert gradients.

MoE Training in Data & Expert Parallel

8

Stream c

Stream a
Stream b

Backward Pass

ms
All-to-all

FFN

0
Allreduce

All-to-all
GateCombine

1.6 8.6 9.2 13.6 15.0 22.6 26.1

All-to-all is prolonged when it overlaps with
allreduce and directly impacts step time.

All-to-all

In backward pass,

• Allreduce: asynchronously aggregate non-expert gradients in data parallel.

• All-to-all: exchange token gradients to compute expert gradients.

MoE Training in Data & Expert Parallel

8

Stream c

Stream a
Stream b

Backward Pass

ms
All-to-all

FFN

0
Allreduce

All-to-all
GateCombine

1.6 8.6 9.2 13.6 15.0 22.6 26.1

All-to-all is prolonged when it overlaps with
allreduce and directly impacts step time.

Slowdown of all-to-all varies:

� � � 	
���������������

����
���

��
�
���

����

��
��
��
�

�����

���

All-to-all

Median: 2x; Maximum: ~4x

Expert Popularity in MoE Inference

9

• Inference: no load balancing constraints => expert selection is workload-
driven, therefore, much more biased.

� � � �
������

���
���
���
���
��	
��

��
��
�

���
�

� � �� ��
	�����

����
����
����
����
����

�
��
��
�
�
�

4-expert MoE 16-expert MoE

Expert Popularity in MoE Inference

9

• Inference: no load balancing constraints => expert selection is workload-
driven, therefore, much more biased.

Devices with unpopular experts have to wait for those with popular experts.

� � � �
������

���
���
���
���
��	
��

��
��
�

���
�

� � �� ��
	�����

����
����
����
����
����

�
��
��
�
�
�

4-expert MoE 16-expert MoE

Expert Popularity in MoE Inference

9

• Inference: no load balancing constraints => expert selection is workload-
driven, therefore, much more biased.

Devices with unpopular experts have to wait for those with popular experts.

Maximum idle time of the least
popular expert

=> 29.4% of the inference time.

� � � �
������

���
���
���
���
��	
��

��
��
�

���
�

� � �� ��
	�����

����
����
����
����
����

�
��
��
�
�
�

4-expert MoE 16-expert MoE

Training: Challenges

10

Gradient i, i-1 Ready
Stream a
Stream b
Stream c ms

0 4.1 19.3 26.9 29.05.7

Bucket [Gi...Gi-2]

14.7 17.7

Gate

12.0

All-to-all

FFNCombine

All-to-all

13.3

Gi Gi-2...

Baseline

Intuition: always prioritise all-to-all and avoid bandwidth sharing.

• Minimise the blocking period incurred by all-to-all

All-reduce operation

Training: Challenges

10

Gradient i, i-1 Ready
Stream a
Stream b
Stream c ms

0 4.1 19.3 26.9 29.05.7

Bucket [Gi...Gi-2]

14.7 17.7

Gate

12.0

All-to-all

FFNCombine

All-to-all

13.3

Gi Gi-2... Stream a
Stream b
Stream c ms

0 4.1 23.85.7 13.3

FFNCombine

All-to-allAll-to-all

22.5

Gate

14.9

Gi

24.6

Gradient i, i-1 Ready

Gi-2

Gi ... Gi-2

Gi-1

Baseline Optimal

Intuition: always prioritise all-to-all and avoid bandwidth sharing.

• Minimise the blocking period incurred by all-to-all

All-reduce operation

Training: Challenges

10

Challenges:

1. NCCL Communication primitives cannot be preempted.

2. No control knob to adjust resource sharing (GPU SM, network bandwidth…).

Gradient i, i-1 Ready
Stream a
Stream b
Stream c ms

0 4.1 19.3 26.9 29.05.7

Bucket [Gi...Gi-2]

14.7 17.7

Gate

12.0

All-to-all

FFNCombine

All-to-all

13.3

Gi Gi-2... Stream a
Stream b
Stream c ms

0 4.1 23.85.7 13.3

FFNCombine

All-to-allAll-to-all

22.5

Gate

14.9

Gi

24.6

Gradient i, i-1 Ready

Gi-2

Gi ... Gi-2

Gi-1

Baseline Optimal

Intuition: always prioritise all-to-all and avoid bandwidth sharing.

• Minimise the blocking period incurred by all-to-all

All-reduce operation

Backward pass

Training: Micro-op Scheduling

11

• Tensor Partitioning

• Partition allreduce into micro-ops

• Prioritise all-to-all whenever possible

Gradient i, i-1 Ready
Stream a
Stream b
Stream c ms

0 4.1 19.3 26.9 29.05.7

Bucket [Gi...Gi-2]

14.7 17.7

Gate

12.0

All-to-all

FFNCombine

All-to-all

13.3

Gi Gi-2...

Baseline

Training: Micro-op Scheduling

11

• Tensor Partitioning

• Partition allreduce into micro-ops

• Prioritise all-to-all whenever possible

Gradient i, i-1 Ready
Stream a
Stream b
Stream c ms

0 4.1 19.3 26.9 29.05.7

Bucket [Gi...Gi-2]

14.7 17.7

Gate

12.0

All-to-all

FFNCombine

All-to-all

13.3

Gi Gi-2...

Baseline Prioritise all-to-all

Stream a
Stream b
Stream c ms

0 4.1 24.65.7 13.3

FFNCombine

All-to-allAll-to-all

22.5

Gate

14.9
AR AR

Gradient i, i-1 Ready
Gi ... Gi-2

Gi-1GiAR Gi-2

23.8

Training: Micro-op Scheduling

11

• Tensor Partitioning

• Partition allreduce into micro-ops

• Prioritise all-to-all whenever possible

Gradient i, i-1 Ready
Stream a
Stream b
Stream c ms

0 4.1 19.3 26.9 29.05.7

Bucket [Gi...Gi-2]

14.7 17.7

Gate

12.0

All-to-all

FFNCombine

All-to-all

13.3

Gi Gi-2...

Baseline Prioritise all-to-all

Stream a
Stream b
Stream c ms

0 4.1 24.65.7 13.3

FFNCombine

All-to-allAll-to-all

22.5

Gate

14.9
AR AR

Gradient i, i-1 Ready
Gi ... Gi-2

Gi-1GiAR Gi-2

23.8

• Partition all-to-all into micro-ops

• Pipelining computation and all-to-all

Training: Micro-op Scheduling

11

• Tensor Partitioning

• Partition allreduce into micro-ops

• Prioritise all-to-all whenever possible

Gradient i, i-1 Ready
Stream a
Stream b
Stream c ms

0 4.1 19.3 26.9 29.05.7

Bucket [Gi...Gi-2]

14.7 17.7

Gate

12.0

All-to-all

FFNCombine

All-to-all

13.3

Gi Gi-2...

Baseline Prioritise all-to-all

Stream a
Stream b
Stream c ms

0 4.1 24.65.7 13.3

FFNCombine

All-to-allAll-to-all

22.5

Gate

14.9
AR AR

Gradient i, i-1 Ready
Gi ... Gi-2

Gi-1GiAR Gi-2

23.8

• Partition all-to-all into micro-ops

• Pipelining computation and all-to-all

Stream a
Stream b
Stream c ms

0 4.1 23.0 25.65.7 13.3

Combine

20.9

Gate

FFN

AR AR AR AR AR
All-to-all All-to-all

Gi ... Gi-2

Inference: Challenges

12

Q: How to deal with imbalance computation load?

Inference: Challenges

12

Q: How to deal with imbalance computation load?

Inference: Challenges

12

Q: How to deal with imbalance computation load?
Allocate resources based on expert popularity:

Popular experts => more resources.

Inference: Challenges

12

Q: How to deal with imbalance computation load?

Token’s expert selection cannot be determined a prior
to the actual gating computation.

Allocate resources based on expert popularity:
Popular experts => more resources.

Inference: Challenges

12

Q: How to deal with imbalance computation load?

Token’s expert selection cannot be determined a prior
to the actual gating computation.

Resource scheduling after gating network.

Inefficient practice for latency-sensitive tasks!

Allocate resources based on expert popularity:
Popular experts => more resources.

Inference: Challenges

12

Q: How to deal with imbalance computation load?

How to achieve low-overhead resource scheduling to balance device load?

Token’s expert selection cannot be determined a prior
to the actual gating computation.

Resource scheduling after gating network.

Inefficient practice for latency-sensitive tasks!

Allocate resources based on expert popularity:
Popular experts => more resources.

Inference: Pattern in Expert Selection

13

• Findings: similar tokens tend to be processed by the same or similar experts
in each layer.

• Tokens selecting the same expert in layer i tend to select the same expert
again in layer i + 1.

Inference: Pattern in Expert Selection

13

• Findings: similar tokens tend to be processed by the same or similar experts
in each layer.

• Tokens selecting the same expert in layer i tend to select the same expert
again in layer i + 1.

� 	
 � �
 � � � � 	� 		
��$�!

�
��
��
�

��
��

�
�#
��
���

� �!��"��!��!���

�������!��

�� �	
�� �

�� �	
�� �

Inference: Pattern in Expert Selection

13

• Findings: similar tokens tend to be processed by the same or similar experts
in each layer.

• Tokens selecting the same expert in layer i tend to select the same expert
again in layer i + 1.

� 	
 � �
 � � � � 	� 		
��$�!

�
��
��
�

��
��

�
�#
��
���

� �!��"��!��!���

�������!��

�� �	
�� �

�� �	
�� �

41.94% tokens when k is 1

54.59% tokens when k is 2

Inference: Pattern in Expert Selection

13

• Findings: similar tokens tend to be processed by the same or similar experts
in each layer.

• Tokens selecting the same expert in layer i tend to select the same expert
again in layer i + 1.

� 	
 � �
 � � � � 	� 		
��$�!

�
��
��
�

��
��

�
�#
��
���

� �!��"��!��!���

�������!��

�� �	
�� �

�� �	
�� �

41.94% tokens when k is 1

54.59% tokens when k is 2

Exploit this pattern to estimate
the overall expert popularity

Inference: Expert Popularity Estimation

14

Inference: Expert Popularity Estimation

14

• Idea: Collect the expert selection distribution during training after the load
balancing loss is minimised.

E0 E1 E2 E3

E0 E1 E2 E3

E0 E1 E2 E3

layer i-2

layer i-1

layer i

layer i+1 E0 E1 E2 E3

Inference: Expert Popularity Estimation

14

• Idea: Collect the expert selection distribution during training after the load
balancing loss is minimised.

E0 E1 E2 E3

E0 E1 E2 E3

E0 E1 E2 E3

layer i-2

layer i-1

layer i

layer i+1 E0 E1 E2 E3

Expert selection path j

Tokens that select the same
experts from layer i − l to layer i.

Inference: Expert Popularity Estimation

14

• Idea: Collect the expert selection distribution during training after the load
balancing loss is minimised.

E0 E1 E2 E3

E0 E1 E2 E3

E0 E1 E2 E3

layer i-2

layer i-1

layer i

layer i+1 E0 E1 E2 E3

Expert selection path j

Tokens that select the same
experts from layer i − l to layer i.

Expert popularity
distribution of path j

Inference: Expert Popularity Estimation

14

• Idea: Collect the expert selection distribution during training after the load
balancing loss is minimised.

E0 E1 E2 E3

E0 E1 E2 E3

E0 E1 E2 E3

layer i-2

layer i-1

layer i

layer i+1 E0 E1 E2 E3E0 E2

Expert selection path j

Tokens that select the same
experts from layer i − l to layer i.

Expert popularity
distribution of path j

Top-k Expert e
popularity: {Pi+1

j(t) }

Inference: Two-phase Scheduling

15

• Phase 1:

• Compute resource allocation for expert e based on popularity

estimation:

ne = N ×
Nt

∑
t=1

Pi+1
j(t) (e)/Nt

No. of tokens in a batch

No. of GPUs

Inference: Two-phase Scheduling

15

• Phase 1:

• Compute resource allocation for expert e based on popularity

estimation:

ne = N ×
Nt

∑
t=1

Pi+1
j(t) (e)/Nt

No. of tokens in a batch

No. of GPUs

Pipelined with model computation => nearly zero overhead

Inference: Two-phase Scheduling

15

• Phase 1:

• Compute resource allocation for expert e based on popularity

estimation:

• Phase 2:

• Fine-tune the allocation with the actual expert selection.

• Re-compute the allocation when the actual selection deviates
significantly from the estimation.

ne = N ×
Nt

∑
t=1

Pi+1
j(t) (e)/Nt

No. of tokens in a batch

No. of GPUs

Pipelined with model computation => nearly zero overhead

Evaluation

16

• Testbed: Our testbed has four worker nodes. Each node has 4 Ampere A100
GPUs with 40GB memory and is equipped with 100Gbps InfiniBand.

• Every FFN layer in Transformer is replaced with the MoE layer.

• Training models:

• Transformer-XL: a 24-layer encoder model.

• BERT2GPT2: a 12-layer encoder-decoder model.

• GPT-2: a 12-layer decoder model.

• Inference models:

• Transformer-XL: text generation with Enwik8 test set.

• BERT: a 12-layer decoder model for translation using WMT En-De test set.

Training step time speedup over Baseline (DeepSpeed) with different
design choices.

Training Step Time

17

Transformer-XL GPT-2 BERT2GPT2

� �
 �	
�������

���

���

���

��	

��
��
�

��
��

��
��
��
��

� �
 �	
�������

���

���

���

��	

��
��
�

��
��

��
��
��
��

� �
 �	
�������

���

���

���

��	

��
��
�

��
��

��
��
��
��

MoE Layer in Training

18

	 � �

������

���
���
���
��	
��

�
���
��
��
���

��
��
��
��

� �
 �	
�������

��

���
���
���
��	

��
��
�
��

��
��
��
��

� � � �

������

���	

��	�

���	

����

�
�

��
�
��

��
��
��
��

MoE layer forward, backward, all-to-all running time speedup over Baseline.

Ideal: schedule resources assuming we have the prior knowledge of exact
expert popularity.

Inference Latency

19

� � � �

�������

���
��	
���
��	
���
�
��
�
��
��
��
�

�
�
��
��
��
��
��
�
�

� � � �

�������

���
��	
���
��	
���

�
��
�
��
��
��
�

�
�
��
��
��
��
��
�
�

� � � �

�������

���
��	
���
��	
���

�
��
�
��
��
��
�

�
�
��
��
��
��
��
�
�

� � � �

�������

���
��	
���
��	
���

�
��
�
��
��
��
�

�
�
��
��
��
��
��
�
�

Median Latency

95%ile Latency

Transformer-XL BERT

MoE Layer in Inference

20

MoE layer running time speedup over Ideal.

� � � �

�������

���
��	
���
��	
���

�
��
�
��
��
��

�
��
�

��
��

� � � �

�������

���
��	
���
��	
���

�
��
�
��
��
��

�
��
�

��
��

�� �� �	 �
 �� �� ��� ���
�������������

�
�
�
	

��
�
��
��
��

�

���
��
��
��

Transformer-XL BERT

All-to-all running time speedup over Ideal in selected layers.

Lina’s Contributions

21

Thanks!

• An in-depth empirical analysis of distributed MoE

• Main causes for all-to-all to be the performance bottleneck in training and
inference.

• [Training] A scheduler prioritises all-to-all over allreduce to improve its
bandwidth and reduce its blocking period.

• [Inference] An estimation method of expert popularity to conduct two-phase
resource scheduling.

