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Large-scale GPU Clusters for DNN jobs

Resource-heavy

2

Latency-sensitive

V100, A100

T4, P4

Separate deployment of GPU clusters for training and inference.
* Figure credited to https://developer.nvidia.com/blog/inference-next-step-gpu-accelerated-deep-learning/
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• Inference cluster: T4

3

Diurnal Patterns
Avg. Utilisation ~40%

Long queuing time

Avg. 3000 s


95%tile 10,000s

Abundant resources are wasted during demands trough.

Observations from the production environment

Lack of unfragmented resources for queuing tasks.

• Training cluster: V100



• Opportunities


• [O1] Fungible and heterogeneous workloads can utilise inference resources.


• [O2] Elastic scaling workload match with the dynamically changing resources 
pool and reduce job preemption.
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How to make the best use of the servers loaned from the inference cluster?
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Capacity Loaning from Inference Cluster 

Low Traffic: loan resources to training jobs.

Traffic Spikes: reclaim resources.

How to make the best use of the servers loaned from the inference cluster?



Opportunity 1: Fungible and Heterogeneous Workloads
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• 21% of the workload are fungible jobs:

• Work with any GPU types in different 

execution runs.

• GPU memory differences can be handled 

with batch size adjustment.

• 5% of the workload are heterogeneous tasks:

• Use heterogeneous GPUs in one single 

execution run.

• Extensive work support efficient training for 

the suitable models

V100 V100 V100 V100

T4 T4 T4 T4

V100 V100 T4 T4

or

V100 T4 T4T4

or

✔

✔

✔

✔
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• Linear scalability within a limited 
scaling range


• Model families: ResNet, BERT…

• ~5% of training jobs 

• ~36% of training cluster 

resources

• Elastic DNN training

• Varied number of workers

• PyTorch Elastic, Elastic DL…

Opportunity 2: Elastic Scaling Workload
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Traditional Training Elastic Training

Gang scheduling Launch with a smaller number of workers

Fixed resource allocation Dynamically adjust resource allocation on-the-fly

Fixed running time Scale out to reduce running time with low overhead

Opportunity 2: Benefit of Elastic Training Workload
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• Opportunities


• [O1] Fungible and heterogeneous workloads can utilise inference resources.


• [O2] Elastic scaling workload match with the dynamically changing resources 
pool and reduce job preemption.
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Capacity Loaning from Inference Cluster 

Low Traffic: loan resources to training jobs.

Traffic Spikes: reclaim resources.

[O2] Scale in elastic workload to vacate 
resources.

[O1, O2] Schedule jobs on inference 
servers, scale out elastic workload
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Lyra: System Architecture

• Lyra: an elastic cluster scheduler


• Cluster-level elasticity handled by Resource Orchestrator


• Job-level elasticity handled by Job Scheduler
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Lyra: System Architecture

• Lyra: an elastic cluster scheduler


• Cluster-level elasticity handled by Resource Orchestrator


• Job-level elasticity handled by Job Scheduler
Resource


Orchestrator

Job Scheduler
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• Capacity Loaning: improve cluster efficiency


Key Questions

10

Training Inference InferenceTraining
Loan

Reserved Inference Server

Training Jobs

Idle Inference Server

Reserved Training Server

❌❌❌ ❌

Preemptions are inevitable and hurt job completion time.

• Preempted jobs are put back to the queue and wait for available resources.


• Jobs without checkpointing loses the existing progress.

• Loaning is simple. How about Reclaiming?

• Which on-loan servers should be returned to minimise preemptions?
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Objective: minimise the number of preemptions

Consider a Reclaim request 


2 servers

1, 2 or 2, 3 or 4,5 

Servers have inter-dependency when co-hosting a job.

given a reclaim request of N servers • Challenges

• Naively selecting servers leads to unnecessary preemption.

• Existing job placement might be messy. 
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Reclaim Server 1 empties Server 2

Capacity Loaning - Problem Formulation
Objective: minimise the number of preemptions

Given a Reclaim request of N servers and job allocation status {S1: Ja, S2: 
Ja…}, which servers to select to minimise the number of job preemptions?
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Reclaim Server 1 empties Server 2

Capacity Loaning - Problem Formulation
Objective: minimise the number of preemptions

Given a Reclaim request of N servers and job allocation status {S1: Ja, S2: 
Ja…}, which servers to select to minimise the number of job preemptions?

Knapsack Size – Reclaim request


Item – Server


Item value – # of job preemptions

How about inter-dependency?

Knapsack with dependent item values!

NP-hard problem…
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We define a new item value by considering servers cohosting each job
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Job Co-hosted by # of servers Per Server Value
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c 2 0.5
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Capacity Loaning - Low Overhead Greedy Heuristic
Objective: minimise the number of preemptions
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Capacity Loaning - Low Overhead Greedy Heuristic
Objective: minimise the number of preemptions

Value: Sum of job’s server fraction
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a 2 0.5

b 1 1

c 2 0.5
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Capacity Loaning - Low Overhead Greedy Heuristic
Objective: minimise the number of preemptions

Value: Sum of job’s server fraction

1. Greedily select lowest-value server

2. Preempt jobs 

3. Update server costs



Key Questions
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• Capacity Loaning: 

• Objective: Minimise inevitable preemptions


• Elastic Scaling:

• Objective: Minimise average JCT and assist Capacity Loaning

• How to determine resource allocation of the elastic training jobs? 

• How to place the jobs in a changing resource pool?

 Job running time changes along with allocated resources.



Problem setup

• Elastic job J: running time RT


• Minimum Demand : wmin

• Maximum Demand: wmax


• Training throughput scales linearly within [wmin, wmax].  


• Given G GPUs and a set of N elastic jobs {J1, J2….JN}, decide resource 
allocation Ri ( ) of each job Ji to minimise average JCT.
gmin

i ≤ Ri ≤ gmax
i

15

Limited Elasticity

Job Scheduling with Elastic Scaling Workloads
Objective: minimise average Job Completion Time (JCT)



Sol.
Initial Allocation JCT Average 

JCTA B A B

1 6 2 50 53.33 51.67

2 2 6 63.33 20 41.67

3 4 4 60 30 45

Cluster Capacity: 8 GPU
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If the wmax  of Job A is 3:

Job wmin wmax Min. running time

A 2 6 50

B 2 6 20

Job wmin wmax Min. running time

A 2 3 100

B 2 6 20

Sol.
Initial Allocation JCT Average 

JCTA B A B

1 3 5 100 24 62

2 2 6 106.67 20 63.33

Short job

Resource Allocation of Elastic Scaling Workloads
Objective: minimise average Job Completion Time (JCT)



Sol.
Initial Allocation JCT Average 

JCTA B A B

1 6 2 50 53.33 51.67

2 2 6 63.33 20 41.67

3 4 4 60 30 45

Cluster Capacity: 8 GPU

16

If the wmax  of Job A is 3:

Job wmin wmax Min. running time

A 2 6 50

B 2 6 20

Job wmin wmax Min. running time

A 2 3 100

B 2 6 20

Sol.
Initial Allocation JCT Average 

JCTA B A B

1 3 5 100 24 62

2 2 6 106.67 20 63.33

Short job

Long job

Resource Allocation of Elastic Scaling Workloads
Objective: minimise average Job Completion Time (JCT)



Sol.
Initial Allocation JCT Average 

JCTA B A B

1 6 2 50 53.33 51.67

2 2 6 63.33 20 41.67

3 4 4 60 30 45

Cluster Capacity: 8 GPU

16

If the wmax  of Job A is 3:

Job wmin wmax Min. running time

A 2 6 50

B 2 6 20

Job wmin wmax Min. running time

A 2 3 100

B 2 6 20

Sol.
Initial Allocation JCT Average 

JCTA B A B

1 3 5 100 24 62

2 2 6 106.67 20 63.33

Short job

Long job

Resource Allocation of Elastic Scaling Workloads
Objective: minimise average Job Completion Time (JCT)

Shortest-job-first does not always work for elastic training jobs.
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Base (min.) Demand Flexible (max. - min.) Demand+Job = 

Lyra - Job Scheduling Heuristic
Objective: minimise average Job Completion Time (JCT)
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Base (min.) Demand Flexible (max. - min.) Demand+Job = 

• First-class citizen


• Gang Scheduling


• Incurs queuing delay

• Non-binary allocation


• Impact running time


• 0 for inelastic jobs

Lyra - Job Scheduling Heuristic
Objective: minimise average Job Completion Time (JCT)

Two-phase resource allocation:

1. Prioritise Base Demand using Shortest-Job-First (SJF) to minimise queuing time

2. Allocate the remaining resources to fulfill the Flexible Demand


1. Minimise job running time



Phase 2: Allocate the remaining resources to fulfill Flexible Demand

Multiple-choice Knapsack problem (select at most one item from each group) 

Job B accepts an extra  [1, 4] workers 

18

Lyra - Resource Allocation of Flexible Demand
Objective: minimise average Job Completion Time (JCT)

Job wmin wmax Min. running time

A 2 3 100

B 2 6 20
Job A: 2 GPU/worker, Job B: 1 GPU/worker



Phase 2: Allocate the remaining resources to fulfill Flexible Demand

Multiple-choice Knapsack problem (select at most one item from each group) 

Job B accepts an extra  [1, 4] workers 

Knapsack Size – available GPUs


Group – job 


Item - possible allocation of the job


Item weight – extra GPUs required


Value – running time reduction
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Lyra - Resource Allocation of Flexible Demand
Objective: minimise average Job Completion Time (JCT)

Job wmin wmax Min. running time

A 2 3 100

B 2 6 20

Group Item Weight Value

A 1 2 50

B

1 1 20

2 2 30

3 3 36

4 4 40

Job A: 2 GPU/worker, Job B: 1 GPU/worker

2 worker -> 150

3 worker -> 100



We follow the bin packing with best-fit decreasing job placement strategy.

How does elastic training jobs help to minimise preemption?

19

Lyra - Job Placement
Objective: minimise preemption and average Job Completion Time (JCT)

Different servers are prioritised for jobs during placement. 

Training Inference InferenceTraining
Loan- Base Demand


- Non-fungible jobs

- Flexible Demand


- Fungible &  
Heterogeneous jobs



We follow the bin packing with best-fit decreasing job placement strategy.

How does elastic training jobs help to minimise preemption?
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Lyra - Job Placement
Objective: minimise preemption and average Job Completion Time (JCT)

• Place base demand and flexible demand on separate groups

• Vacate servers by scaling in elastic jobs to meet reclaim request first

Different servers are prioritised for jobs during placement. 

Training Inference InferenceTraining
Loan- Base Demand


- Non-fungible jobs

- Flexible Demand


- Fungible &  
Heterogeneous jobs



Evaluation – Experiment Setup
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• 2V100 => 1V100 + 3 T4 => 1B + 3 *  1/3B


• LBBSP


• Trace: 15-day job trace, 50390 training job + 3544 V100 GPUs for training


• Baseline: No capacity loaning or elastic scaling


• Scenarios


1. Basic: ~5% of large jobs support elastic training workload + 21% of 
jobs are fungible workload


2. Advanced: Basic + 10% jobs are heterogenous workload (non-ideal 
performance)


3. Ideal: all jobs are elastic, fungible and heterogeneous workload
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A 8-hour sampled trace: 180 training jobs, 10 elastic jobs


Cluster: 32 x V100 GPUs, 32 x T4 GPUs

6 loaning, 8 reclaiming involving 10 servers, 73 scaling operations

Evaluation – Testbed Results
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Evaluation – Simulation Results

Avg. Queuing time: 1.52x -> 1.67x -> 2.66x


Avg. JCT: 1.48x -> 1.59x ->  1.87x

Preemption ratio drops by 2.14x in Ideal scenario.



Queuing Time JCT

Mean Median 95%tile Mean Median 95%tile

Baseline 4573 1283 23351 11547 2122 60170

Lyra 1029 
(4.44x)

272 
(4.71x)

7249 
(3.22x)

6832 
(1.69x)

1256 
(1.69x)

35604 
(1.69x)
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Queuing time and JCT of jobs running on on-loan servers. 

Resource usage of on-loan servers
Above ~93%

Resources on On-loan Servers 
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48-hour overall GPU utilisation in Basic and Ideal scenario 

GPU Utilisation in different scenarios

Check out our paper for more evaluation results.



Summary of contributions
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• An elastic GPU cluster scheduler for deep learning.

• Exploits cluster-level elasticity by capacity loaning and job-level elasticity by 

scheduling elastic scaling jobs. 

• Proposes efficient heuristics for capacity loaning and elastic job scheduling.




Thanks!
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