
1

Lyra: Elastic Cluster Scheduling for Deep Learning

Jiamin Li1, Hong Xu2, Yibo Zhu3, Zherui Liu4, Chuanxiong Guo5, Cong Wang1

1City University of Hong Kong, 2The Chinese University of Hong Kong, 3Google, 4ByteDance
Inc., 5Unaffiliated

EuroSys 2023

Large-scale GPU Clusters for DNN jobs

Resource-heavy

2

Latency-sensitive

V100, A100

T4, P4

* Figure credited to https://developer.nvidia.com/blog/inference-next-step-gpu-accelerated-deep-learning/

Large-scale GPU Clusters for DNN jobs

Resource-heavy

2

Latency-sensitive

V100, A100

T4, P4

Separate deployment of GPU clusters for training and inference.
* Figure credited to https://developer.nvidia.com/blog/inference-next-step-gpu-accelerated-deep-learning/

• Inference cluster: T4

3

Observations from the production environment

• Training cluster: V100

• Inference cluster: T4

3

Diurnal Patterns

Observations from the production environment

• Training cluster: V100

• Inference cluster: T4

3

Diurnal Patterns
Avg. Utilisation ~40%

Observations from the production environment

• Training cluster: V100

• Inference cluster: T4

3

Diurnal Patterns
Avg. Utilisation ~40%

Long queuing time

Avg. 3000 s

95%tile 10,000s

Observations from the production environment

• Training cluster: V100

• Inference cluster: T4

3

Diurnal Patterns
Avg. Utilisation ~40%

Long queuing time

Avg. 3000 s

95%tile 10,000s

Abundant resources are wasted during demands trough.

Observations from the production environment

• Training cluster: V100

• Inference cluster: T4

3

Diurnal Patterns
Avg. Utilisation ~40%

Long queuing time

Avg. 3000 s

95%tile 10,000s

Abundant resources are wasted during demands trough.

Observations from the production environment

Lack of unfragmented resources for queuing tasks.

• Training cluster: V100

• Opportunities

• [O1] Fungible and heterogeneous workloads can utilise inference resources.

• [O2] Elastic scaling workload match with the dynamically changing resources
pool and reduce job preemption.

4

Capacity Loaning from Inference Cluster

How to make the best use of the servers loaned from the inference cluster?

• Opportunities

• [O1] Fungible and heterogeneous workloads can utilise inference resources.

• [O2] Elastic scaling workload match with the dynamically changing resources
pool and reduce job preemption.

4

Capacity Loaning from Inference Cluster

Low Traffic: loan resources to training jobs.

How to make the best use of the servers loaned from the inference cluster?

• Opportunities

• [O1] Fungible and heterogeneous workloads can utilise inference resources.

• [O2] Elastic scaling workload match with the dynamically changing resources
pool and reduce job preemption.

4

Capacity Loaning from Inference Cluster

Low Traffic: loan resources to training jobs.

Traffic Spikes: reclaim resources.

How to make the best use of the servers loaned from the inference cluster?

Opportunity 1: Fungible and Heterogeneous Workloads

5

• 21% of the workload are fungible jobs:
• Work with any GPU types in different

execution runs.
• GPU memory differences can be handled

with batch size adjustment.

• 5% of the workload are heterogeneous tasks:
• Use heterogeneous GPUs in one single

execution run.
• Extensive work support efficient training for

the suitable models

V100 V100 V100 V100

T4 T4 T4 T4

V100 V100 T4 T4

or

V100 T4 T4T4

or

✔

✔

✔

✔

6

• Linear scalability within a limited
scaling range

• Model families: ResNet, BERT…
• ~5% of training jobs
• ~36% of training cluster

resources

• Elastic DNN training
• Varied number of workers
• PyTorch Elastic, Elastic DL…

Opportunity 2: Elastic Scaling Workload

7

Traditional Training Elastic Training

Gang scheduling Launch with a smaller number of workers

Fixed resource allocation Dynamically adjust resource allocation on-the-fly

Fixed running time Scale out to reduce running time with low overhead

Opportunity 2: Benefit of Elastic Training Workload

• Opportunities

• [O1] Fungible and heterogeneous workloads can utilise inference resources.

• [O2] Elastic scaling workload match with the dynamically changing resources
pool and reduce job preemption.

8

Capacity Loaning from Inference Cluster

Low Traffic: loan resources to training jobs.

Traffic Spikes: reclaim resources.

• Opportunities

• [O1] Fungible and heterogeneous workloads can utilise inference resources.

• [O2] Elastic scaling workload match with the dynamically changing resources
pool and reduce job preemption.

8

Capacity Loaning from Inference Cluster

Low Traffic: loan resources to training jobs.

Traffic Spikes: reclaim resources.

[O2] Scale in elastic workload to vacate
resources.

[O1, O2] Schedule jobs on inference
servers, scale out elastic workload

9

Job Queue
② Jobs & Resource

Resource
Orchestrator

Job Scheduler
③

Allocate

(d) Notify Preemption Reclaim
(a) Loan/Reclaim

Amount

Job Profiler
①

Profile
(b) Select
to Reclaim

④ Preempt⑤ Interrupted Jobs

Training Inference(c)
Loan

Reclaim

Lyra: System Architecture

• Lyra: an elastic cluster scheduler

• Cluster-level elasticity handled by Resource Orchestrator

• Job-level elasticity handled by Job Scheduler

9

Job Queue
② Jobs & Resource

Resource
Orchestrator

Job Scheduler
③

Allocate

(d) Notify Preemption Reclaim
(a) Loan/Reclaim

Amount

Job Profiler
①

Profile
(b) Select
to Reclaim

④ Preempt⑤ Interrupted Jobs

Training Inference(c)
Loan

Reclaim

Lyra: System Architecture

• Lyra: an elastic cluster scheduler

• Cluster-level elasticity handled by Resource Orchestrator

• Job-level elasticity handled by Job Scheduler
Resource

Orchestrator

9

Job Queue
② Jobs & Resource

Resource
Orchestrator

Job Scheduler
③

Allocate

(d) Notify Preemption Reclaim
(a) Loan/Reclaim

Amount

Job Profiler
①

Profile
(b) Select
to Reclaim

④ Preempt⑤ Interrupted Jobs

Training Inference(c)
Loan

Reclaim

Lyra: System Architecture

• Lyra: an elastic cluster scheduler

• Cluster-level elasticity handled by Resource Orchestrator

• Job-level elasticity handled by Job Scheduler
Resource

Orchestrator

Job Scheduler

• Capacity Loaning: improve cluster efficiency

Key Questions

10

• Capacity Loaning: improve cluster efficiency

Key Questions

10

Training Inference InferenceTraining
Loan

Reserved Inference Server

Training Jobs

Idle Inference Server

Reserved Training Server

• Loaning is simple. How about Reclaiming?
• Which on-loan servers should be returned to minimise preemptions?

• Capacity Loaning: improve cluster efficiency

Key Questions

10

Training Inference InferenceTraining
Loan

Reserved Inference Server

Training Jobs

Idle Inference Server

Reserved Training Server

❌❌❌ ❌

• Loaning is simple. How about Reclaiming?
• Which on-loan servers should be returned to minimise preemptions?

• Capacity Loaning: improve cluster efficiency

Key Questions

10

Training Inference InferenceTraining
Loan

Reserved Inference Server

Training Jobs

Idle Inference Server

Reserved Training Server

❌❌❌ ❌

• Preempted jobs are put back to the queue and wait for available resources.

• Jobs without checkpointing loses the existing progress.

• Loaning is simple. How about Reclaiming?
• Which on-loan servers should be returned to minimise preemptions?

• Capacity Loaning: improve cluster efficiency

Key Questions

10

Training Inference InferenceTraining
Loan

Reserved Inference Server

Training Jobs

Idle Inference Server

Reserved Training Server

❌❌❌ ❌

Preemptions are inevitable and hurt job completion time.

• Preempted jobs are put back to the queue and wait for available resources.

• Jobs without checkpointing loses the existing progress.

• Loaning is simple. How about Reclaiming?
• Which on-loan servers should be returned to minimise preemptions?

Capacity Loaning - Challenges in Server Reclaiming

11

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

Objective: minimise the number of preemptions

Consider a Reclaim request

2 servers

1, 2 or 2, 3 or 4,5

Servers have inter-dependency when co-hosting a job.

given a reclaim request of N servers • Challenges
• Naively selecting servers leads to unnecessary preemption.
• Existing job placement might be messy.

Capacity Loaning - Challenges in Server Reclaiming

11

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

Objective: minimise the number of preemptions

Consider a Reclaim request

2 servers

1, 2 or 2, 3 or 4,5

Servers have inter-dependency when co-hosting a job.

given a reclaim request of N servers • Challenges
• Naively selecting servers leads to unnecessary preemption.
• Existing job placement might be messy.

12

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

Reclaim Server 1 empties Server 2

Capacity Loaning - Problem Formulation
Objective: minimise the number of preemptions

Given a Reclaim request of N servers and job allocation status {S1: Ja, S2:
Ja…}, which servers to select to minimise the number of job preemptions?

12

Answer: Model as a Knapsack problem

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

Reclaim Server 1 empties Server 2

Capacity Loaning - Problem Formulation
Objective: minimise the number of preemptions

Given a Reclaim request of N servers and job allocation status {S1: Ja, S2:
Ja…}, which servers to select to minimise the number of job preemptions?

12

Answer: Model as a Knapsack problem

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

Reclaim Server 1 empties Server 2

Capacity Loaning - Problem Formulation
Objective: minimise the number of preemptions

Given a Reclaim request of N servers and job allocation status {S1: Ja, S2:
Ja…}, which servers to select to minimise the number of job preemptions?

Knapsack Size – Reclaim request

Item – Server

Item value – # of job preemptions

12

Answer: Model as a Knapsack problem

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

Reclaim Server 1 empties Server 2

Capacity Loaning - Problem Formulation
Objective: minimise the number of preemptions

Given a Reclaim request of N servers and job allocation status {S1: Ja, S2:
Ja…}, which servers to select to minimise the number of job preemptions?

Knapsack Size – Reclaim request

Item – Server

Item value – # of job preemptions

How about inter-dependency?

12

Answer: Model as a Knapsack problem

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

Reclaim Server 1 empties Server 2

Capacity Loaning - Problem Formulation
Objective: minimise the number of preemptions

Given a Reclaim request of N servers and job allocation status {S1: Ja, S2:
Ja…}, which servers to select to minimise the number of job preemptions?

Knapsack Size – Reclaim request

Item – Server

Item value – # of job preemptions

How about inter-dependency?

Knapsack with dependent item values!

12

Answer: Model as a Knapsack problem

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

Reclaim Server 1 empties Server 2

Capacity Loaning - Problem Formulation
Objective: minimise the number of preemptions

Given a Reclaim request of N servers and job allocation status {S1: Ja, S2:
Ja…}, which servers to select to minimise the number of job preemptions?

Knapsack Size – Reclaim request

Item – Server

Item value – # of job preemptions

How about inter-dependency?

Knapsack with dependent item values!

NP-hard problem…

13

We define a new item value by considering servers cohosting each job

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

Job Co-hosted by # of servers Per Server Value

a 2 0.5

b 1 1

c 2 0.5

d 2 0.5

Capacity Loaning - Low Overhead Greedy Heuristic
Objective: minimise the number of preemptions

13

We define a new item value by considering servers cohosting each job

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

0.5
0.5
1
0.5
1
0.5

Job Co-hosted by # of servers Per Server Value

a 2 0.5

b 1 1

c 2 0.5

d 2 0.5

Capacity Loaning - Low Overhead Greedy Heuristic
Objective: minimise the number of preemptions

Value: Sum of job’s server fraction

13

We define a new item value by considering servers cohosting each job

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

a

Server 1 a aa aa a

aa aa a

b bb bb bb b

Server 2

Server 3

Server 4 d dd dc cc d

e ed d

e ee ee ee e

Server 5

Server 6b b b b b b b b

a a

a

a

a a a

a aa

a a

c c c c c c

c c d d

dd dd dddd

cc

0.5
0.5
1
0.5
1
0.5

Job Co-hosted by # of servers Per Server Value

a 2 0.5

b 1 1

c 2 0.5

d 2 0.5

Capacity Loaning - Low Overhead Greedy Heuristic
Objective: minimise the number of preemptions

Value: Sum of job’s server fraction

1. Greedily select lowest-value server
2. Preempt jobs
3. Update server costs

Key Questions

14

• Capacity Loaning:
• Objective: Minimise inevitable preemptions

• Elastic Scaling:
• Objective: Minimise average JCT and assist Capacity Loaning
• How to determine resource allocation of the elastic training jobs?
• How to place the jobs in a changing resource pool?

 Job running time changes along with allocated resources.

Problem setup
• Elastic job J: running time RT

• Minimum Demand : wmin
• Maximum Demand: wmax

• Training throughput scales linearly within [wmin, wmax].

• Given G GPUs and a set of N elastic jobs {J1, J2….JN}, decide resource
allocation Ri () of each job Ji to minimise average JCT. gmin

i ≤ Ri ≤ gmax
i

15

Limited Elasticity

Job Scheduling with Elastic Scaling Workloads
Objective: minimise average Job Completion Time (JCT)

Sol.
Initial Allocation JCT Average

JCTA B A B

1 6 2 50 53.33 51.67

2 2 6 63.33 20 41.67

3 4 4 60 30 45

Cluster Capacity: 8 GPU

16

Job wmin wmax Min. running time

A 2 6 50

B 2 6 20

Resource Allocation of Elastic Scaling Workloads
Objective: minimise average Job Completion Time (JCT)

Sol.
Initial Allocation JCT Average

JCTA B A B

1 6 2 50 53.33 51.67

2 2 6 63.33 20 41.67

3 4 4 60 30 45

Cluster Capacity: 8 GPU

16

Job wmin wmax Min. running time

A 2 6 50

B 2 6 20 Short job

Resource Allocation of Elastic Scaling Workloads
Objective: minimise average Job Completion Time (JCT)

Sol.
Initial Allocation JCT Average

JCTA B A B

1 6 2 50 53.33 51.67

2 2 6 63.33 20 41.67

3 4 4 60 30 45

Cluster Capacity: 8 GPU

16

If the wmax of Job A is 3:

Job wmin wmax Min. running time

A 2 6 50

B 2 6 20 Short job

Resource Allocation of Elastic Scaling Workloads
Objective: minimise average Job Completion Time (JCT)

Sol.
Initial Allocation JCT Average

JCTA B A B

1 6 2 50 53.33 51.67

2 2 6 63.33 20 41.67

3 4 4 60 30 45

Cluster Capacity: 8 GPU

16

If the wmax of Job A is 3:

Job wmin wmax Min. running time

A 2 6 50

B 2 6 20

Job wmin wmax Min. running time

A 2 3 100

B 2 6 20

Sol.
Initial Allocation JCT Average

JCTA B A B

1 3 5 100 24 62

2 2 6 106.67 20 63.33

Short job

Resource Allocation of Elastic Scaling Workloads
Objective: minimise average Job Completion Time (JCT)

Sol.
Initial Allocation JCT Average

JCTA B A B

1 6 2 50 53.33 51.67

2 2 6 63.33 20 41.67

3 4 4 60 30 45

Cluster Capacity: 8 GPU

16

If the wmax of Job A is 3:

Job wmin wmax Min. running time

A 2 6 50

B 2 6 20

Job wmin wmax Min. running time

A 2 3 100

B 2 6 20

Sol.
Initial Allocation JCT Average

JCTA B A B

1 3 5 100 24 62

2 2 6 106.67 20 63.33

Short job

Long job

Resource Allocation of Elastic Scaling Workloads
Objective: minimise average Job Completion Time (JCT)

Sol.
Initial Allocation JCT Average

JCTA B A B

1 6 2 50 53.33 51.67

2 2 6 63.33 20 41.67

3 4 4 60 30 45

Cluster Capacity: 8 GPU

16

If the wmax of Job A is 3:

Job wmin wmax Min. running time

A 2 6 50

B 2 6 20

Job wmin wmax Min. running time

A 2 3 100

B 2 6 20

Sol.
Initial Allocation JCT Average

JCTA B A B

1 3 5 100 24 62

2 2 6 106.67 20 63.33

Short job

Long job

Resource Allocation of Elastic Scaling Workloads
Objective: minimise average Job Completion Time (JCT)

Shortest-job-first does not always work for elastic training jobs.

17

Base (min.) Demand Flexible (max. - min.) Demand+Job =

Lyra - Job Scheduling Heuristic
Objective: minimise average Job Completion Time (JCT)

17

Base (min.) Demand Flexible (max. - min.) Demand+Job =

• First-class citizen

• Gang Scheduling

• Incurs queuing delay

Lyra - Job Scheduling Heuristic
Objective: minimise average Job Completion Time (JCT)

17

Base (min.) Demand Flexible (max. - min.) Demand+Job =

• First-class citizen

• Gang Scheduling

• Incurs queuing delay

• Non-binary allocation

• Impact running time

• 0 for inelastic jobs

Lyra - Job Scheduling Heuristic
Objective: minimise average Job Completion Time (JCT)

17

Base (min.) Demand Flexible (max. - min.) Demand+Job =

• First-class citizen

• Gang Scheduling

• Incurs queuing delay

• Non-binary allocation

• Impact running time

• 0 for inelastic jobs

Lyra - Job Scheduling Heuristic
Objective: minimise average Job Completion Time (JCT)

Two-phase resource allocation:
1. Prioritise Base Demand using Shortest-Job-First (SJF) to minimise queuing time
2. Allocate the remaining resources to fulfill the Flexible Demand

1. Minimise job running time

Phase 2: Allocate the remaining resources to fulfill Flexible Demand

Multiple-choice Knapsack problem (select at most one item from each group)

Job B accepts an extra [1, 4] workers

18

Lyra - Resource Allocation of Flexible Demand
Objective: minimise average Job Completion Time (JCT)

Job wmin wmax Min. running time

A 2 3 100

B 2 6 20
Job A: 2 GPU/worker, Job B: 1 GPU/worker

Phase 2: Allocate the remaining resources to fulfill Flexible Demand

Multiple-choice Knapsack problem (select at most one item from each group)

Job B accepts an extra [1, 4] workers

Knapsack Size – available GPUs

Group – job

Item - possible allocation of the job

Item weight – extra GPUs required

Value – running time reduction

18

Lyra - Resource Allocation of Flexible Demand
Objective: minimise average Job Completion Time (JCT)

Job wmin wmax Min. running time

A 2 3 100

B 2 6 20
Job A: 2 GPU/worker, Job B: 1 GPU/worker

Phase 2: Allocate the remaining resources to fulfill Flexible Demand

Multiple-choice Knapsack problem (select at most one item from each group)

Job B accepts an extra [1, 4] workers

Knapsack Size – available GPUs

Group – job

Item - possible allocation of the job

Item weight – extra GPUs required

Value – running time reduction

18

Lyra - Resource Allocation of Flexible Demand
Objective: minimise average Job Completion Time (JCT)

Job wmin wmax Min. running time

A 2 3 100

B 2 6 20

Group Item Weight Value

A 1 2 50

B

1 1 20

2 2 30

3 3 36

4 4 40

Job A: 2 GPU/worker, Job B: 1 GPU/worker

2 worker -> 150
3 worker -> 100

We follow the bin packing with best-fit decreasing job placement strategy.
How does elastic training jobs help to minimise preemption?

19

Lyra - Job Placement
Objective: minimise preemption and average Job Completion Time (JCT)

Different servers are prioritised for jobs during placement.

Training Inference InferenceTraining
Loan- Base Demand

- Non-fungible jobs

- Flexible Demand

- Fungible &
Heterogeneous jobs

We follow the bin packing with best-fit decreasing job placement strategy.
How does elastic training jobs help to minimise preemption?

19

Lyra - Job Placement
Objective: minimise preemption and average Job Completion Time (JCT)

• Place base demand and flexible demand on separate groups
• Vacate servers by scaling in elastic jobs to meet reclaim request first

Different servers are prioritised for jobs during placement.

Training Inference InferenceTraining
Loan- Base Demand

- Non-fungible jobs

- Flexible Demand

- Fungible &
Heterogeneous jobs

Evaluation – Experiment Setup

20

• 2V100 => 1V100 + 3 T4 => 1B + 3 * 1/3B

• LBBSP

• Trace: 15-day job trace, 50390 training job + 3544 V100 GPUs for training

• Baseline: No capacity loaning or elastic scaling

• Scenarios

1. Basic: ~5% of large jobs support elastic training workload + 21% of
jobs are fungible workload

2. Advanced: Basic + 10% jobs are heterogenous workload (non-ideal
performance)

3. Ideal: all jobs are elastic, fungible and heterogeneous workload

21

A 8-hour sampled trace: 180 training jobs, 10 elastic jobs

Cluster: 32 x V100 GPUs, 32 x T4 GPUs

6 loaning, 8 reclaiming involving 10 servers, 73 scaling operations

Evaluation – Testbed Results

22

Evaluation – Simulation Results

Avg. Queuing time: 1.52x -> 1.67x -> 2.66x

Avg. JCT: 1.48x -> 1.59x -> 1.87x

Preemption ratio drops by 2.14x in Ideal scenario.

Queuing Time JCT

Mean Median 95%tile Mean Median 95%tile

Baseline 4573 1283 23351 11547 2122 60170

Lyra 1029
(4.44x)

272
(4.71x)

7249
(3.22x)

6832
(1.69x)

1256
(1.69x)

35604
(1.69x)

23

Queuing time and JCT of jobs running on on-loan servers.

Resource usage of on-loan servers
Above ~93%

Resources on On-loan Servers

24

48-hour overall GPU utilisation in Basic and Ideal scenario

GPU Utilisation in different scenarios

Check out our paper for more evaluation results.

Summary of contributions

25

• An elastic GPU cluster scheduler for deep learning.
• Exploits cluster-level elasticity by capacity loaning and job-level elasticity by

scheduling elastic scaling jobs.
• Proposes efficient heuristics for capacity loaning and elastic job scheduling.

Thanks!

26

